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SUMMER INTERNSHIPS

My group has several 3 month summer intern positions available 
for Bachelor's or Master's degree students from University of 
Helsinki or other Finnish universities, during summer 2019.  

Please contact me if interested! 

http://www.edahelsinki.fi/jobs.html
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OFFICIAL COURSE 
BUSINESS

• For details see http://www.edahelsinki.fi/dsns2019/course.html  
• Schedule 
• Selecting topics (by 24 Jan, optional Q&A session on 24 Jan) 
• Pitch talks (7 Feb, next session) 
• Roles: 

• 1 presentation 
• 2 opponent duties 
• participation 

• Requirements and grading 
• Missed sessions or late submission will affect grading 
• Assistant: Anton Björklund (anton.bjorklund@helsinki.fi) 
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SELECTING TOPICS

• We have a list of proposed topics 
• You can also propose own topic 
• Idea: computational methods applied to natural sciences
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HOW TO MAKE A GOOD 
PRESENTATION

• Discuss an idea instead of a paper! 
• Do not talk about stuff that you don’t understand!
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idea

paper your presentation

Authors did this. You should do this.

You should avoid this.



HOW TO MAKE A GOOD 
PRESENTATION

• Discuss an idea instead of present a paper. 
• Do not talk about things that you do not understand. 
• Avoid random details. 
• If necessary to mention some detail, explain why it is important. 
• Give concrete examples. 
• Focus on insights and novel results, not on background. 
• Know your audience.
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CONTENTS

• Paradigm shift and some issues 
• Data management and preprocessing 
• Robustness and data samples 
• Supervised learning 
• Interpretability of supervised learning 
• Use of simulations 
• (Interactive) data visualisation and dimensionality reduction 
• Tools
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AI IN SCIENCES

• Examples of merging CS with other disciplines: 
• genetics + computer science (AI) = bioinformatics 
• physics + computer science (AI) = computational physics 

• New computational formulations of research problems 
• p-values for individual genes → gene interaction networks 
• properties of “simple” systems → emergent behaviour of 

complex systems 
• The disciplines become inseparable 

• revolutionary, not evolutionary, the effects are hard to foresee
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THE PARABLE OF  
BIG DATA
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From Lazer et al., Science 2014.
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Figure 2: Relative error of mini-SMEAR O3 measure-
ments calibrated against SMEAR. With re-calibration
is re-calibrated every 14 days.

4G networks operation. Our system leverages 5G and edge
computing, as opposed to the cloud, in order to enable �ne-
grained real-time air quality measurements.

5 IMPLEMENTATION
Our prototype sensor array measures gases: ozone (O3), car-
bon monoxide (CO), nitrogen and sulfur dioxide (NO2, SO2);
particulate matter  2.5µm (PM2.5) and  10µm (PM10); tem-
perature, pressure, and relative humidity. The O3 and PM2.5
sensors allow us to compare measurements with the SMEAR
station and monitor measurement drift.
Our MegaSense prototype consists of multiple sensor ar-

rays, a computer receiving themeasurements, and calibration
routines programmed in Matlab. Our demo uses Vaisala’s
AQT4008 as a mini-SMEAR station to highlight the multi-
vendor capabilities of our system. Calibration was performed
between mini-SMEAR and the SMEAR stations, and our re-
sults indicate that re-calibration minimizes the error for O3
and NO2 81% of the time (mean relative error reduced by
25%–45%, results for O3 in Fig. 2). For NO2, the best results
with linear regression were obtained by using only the raw
measurements from the NO2 sensor. For O3, multivariate lin-
ear regression gave the best results, with the raw O3 sensor
output, temperature, and pressure.

6 DEMO SETUP
The demonstration consists of the full prototype system as
described above. We will bring our own extension cord to
power our demo devices (laptop and sensor prototypes). For
maximum e�ect, a large screen should be connected to the
laptop, so the demo can reach a larger audience.
8https://www.vaisala.com/sites/default/�les/documents/
AQT400-Series-Datasheet-B211581EN.pdf

Figure 3: MegaSense demo setup.

Setup time for the demo is roughly 10 minutes.
Interaction: Spectators can inspect the sensors and the net-
work environment and observe how, for example, CO2 read-
ings change during the interaction. The distributed air qual-
ity sensing, calibration, and air quality of the demo room
will be analyzed and explained to the audience.
Our Key Contribution is the sensor calibration method, a
crucial component of the hierarchical low-cost air pollution
monitoring system supported by the 5G network. With the
calibration, our sensor prototype demonstrates that accurate
low-cost air quality measurement is feasible. We will also
explain the signaling aspects and how 5G architecture can
be leveraged to optimize it.

7 ACKNOWLEDGMENTS
This work was supported by the MegaSense project9, in part
funded by Business Finland, and the Academy of Finland
grant 297741.
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AI CAN BE FOOLED
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From Szegedy et al. 2013.

https://arxiv.org/abs/1312.6199


NEURAL NETWORK SAYS THAT 
THIS IS A WOLF (IT IS NOT)
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(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad

model’s prediction in the “Husky vs Wolf” task.

Before After

Trusted the bad model 10 out of 27 3 out of 27
Snow as a potential feature 12 out of 27 25 out of 27

Table 2: “Husky vs Wolf” experiment results.

to work well in the real world, (2) why, and (3) how do
they think the algorithm is able to distinguish between these
photos of wolves and huskies. After getting these responses,
we show the same images with the associated explanations,
such as in Figure 11b, and ask the same questions.

Since this task requires some familiarity with the notion of
spurious correlations and generalization, the set of subjects
for this experiment were graduate students who have taken at
least one graduate machine learning course. After gathering
the responses, we had 3 independent evaluators read their
reasoning and determine if each subject mentioned snow,
background, or equivalent as a feature the model may be
using. We pick the majority to decide whether the subject
was correct about the insight, and report these numbers
before and after showing the explanations in Table 2.
Before observing the explanations, more than a third

trusted the classifier, and a little less than half mentioned
the snow pattern as something the neural network was using
– although all speculated on other patterns. After examining
the explanations, however, almost all of the subjects identi-
fied the correct insight, with much more certainty that it was
a determining factor. Further, the trust in the classifier also
dropped substantially. Although our sample size is small,
this experiment demonstrates the utility of explaining indi-
vidual predictions for getting insights into classifiers knowing
when not to trust them and why.

7. RELATED WORK
The problems with relying on validation set accuracy as

the primary measure of trust have been well studied. Practi-
tioners consistently overestimate their model’s accuracy [21],
propagate feedback loops [23], or fail to notice data leaks [14].
In order to address these issues, researchers have proposed
tools like Gestalt [20] and Modeltracker [1], which help users
navigate individual instances. These tools are complemen-
tary to LIME in terms of explaining models, since they do
not address the problem of explaining individual predictions.
Further, our submodular pick procedure can be incorporated
in such tools to aid users in navigating larger datasets.
Some recent work aims to anticipate failures in machine

learning, specifically for vision tasks [3, 29]. Letting users
know when the systems are likely to fail can lead to an
increase in trust, by avoiding “silly mistakes” [8]. These
solutions either require additional annotations and feature
engineering that is specific to vision tasks or do not provide
insight into why a decision should not be trusted. Further-
more, they assume that the current evaluation metrics are
reliable, which may not be the case if problems such as data
leakage are present. Other recent work [11] focuses on ex-
posing users to di↵erent kinds of mistakes (our pick step).
Interestingly, the subjects in their study did not notice the
serious problems in the 20 newsgroups data even after look-
ing at many mistakes, suggesting that examining raw data
is not su�cient. Note that (author?) [11] are not alone in
this regard, many researchers in the field have unwittingly
published classifiers that would not generalize for this task.
Using LIME, we show that even non-experts are able to
identify these irregularities when explanations are present.
Further, LIME can complement these existing systems, and
allow users to assess trust even when a prediction seems
“correct” but is made for the wrong reasons.

Recognizing the utility of explanations in assessing trust,
many have proposed using interpretable models [27], espe-
cially for the medical domain [6, 17, 26]. While such models
may be appropriate for some domains, they may not apply
equally well to others (e.g. a supersparse linear model [26]
with 5� 10 features is unsuitable for text applications). In-
terpretability, in these cases, comes at the cost of flexibility,
accuracy, or e�ciency. For text, EluciDebug [16] is a full
human-in-the-loop system that shares many of our goals
(interpretability, faithfulness, etc). However, they focus on
an already interpretable model (Naive Bayes). In computer
vision, systems that rely on object detection to produce
candidate alignments [13] or attention [28] are able to pro-
duce explanations for their predictions. These are, however,
constrained to specific neural network architectures or inca-
pable of detecting “non object” parts of the images. Here we
focus on general, model-agnostic explanations that can be
applied to any classifier or regressor that is appropriate for
the domain - even ones that are yet to be proposed.

A common approach to model-agnostic explanation is learn-
ing a potentially interpretable model on the predictions of
the original model [2, 7, 22]. Having the explanation be a
gradient vector [2] captures a similar locality intuition to
that of LIME. However, interpreting the coe�cients on the
gradient is di�cult, particularly for confident predictions
(where gradient is near zero). Further, these explanations ap-
proximate the original model globally, thus maintaining local
fidelity becomes a significant challenge, as our experiments
demonstrate. In contrast, LIME solves the much more feasi-
ble task of finding a model that approximates the original
model locally. The idea of perturbing inputs for explanations
has been explored before [24], where the authors focus on
learning a specific contribution model, as opposed to our
general framework. None of these approaches explicitly take
cognitive limitations into account, and thus may produce
non-interpretable explanations, such as a gradients or linear
models with thousands of non-zero weights. The problem
becomes worse if the original features are nonsensical to
humans (e.g. word embeddings). In contrast, LIME incor-
porates interpretability both in the optimization and in our
notion of interpretable representation, such that domain and
task specific interpretability criteria can be accommodated.
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From Ribeiro et al., KDD 2016.
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TELL ME SOMETHING 
OBVIOUS

!13

• Often, AI finds 
something that is already 
obvious for the expert 

• Dimensionality 
reduction finds low-
dimensional embedding 
of the data (e.g., 
scatterplot)



MANAGING DATA AND CODE 
(BEFORE ANALYSIS)
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From Amatriain, 
Basilico 2013.

Netflix 
system 
architecture

https://medium.com/netflix-techblog/system-architectures-for-personalization-and-recommendation-e081aa94b5d8
https://medium.com/netflix-techblog/system-architectures-for-personalization-and-recommendation-e081aa94b5d8
https://medium.com/netflix-techblog/system-architectures-for-personalization-and-recommendation-e081aa94b5d8
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From 
Wozniak 
2017.

CERN 
accelerator 
logging 
service

https://databricks.com/blog/2017/12/14/the-architecture-of-the-next-cern-accelerator-logging-service.html
https://databricks.com/blog/2017/12/14/the-architecture-of-the-next-cern-accelerator-logging-service.html


DATA UNDERSTANDING 
AND DATA PREPARATION

• Claim: 80% of the work on 
data mining project is about 
data understanding and 
data preparation 

• Cross Industry Standard 
Process Data Mining 
(CRISP-DM)
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Figure by K. Jansen.

https://commons.wikimedia.org/wiki/File:CRISP-DM_Process_Diagram.png


DATA WRANGLING 
CHALLENGES

• DP Data parsing, e.g., converting csv’s or tables 
• DD Obtaining (or inferring) a data dictionary: basic types + semantics 
• DI Data integration: Combining data from multiple sources 
• ER Entity resolution: Recognising that two distinct pieces of information in the 

data concern the same entity. Includes deduplication and record linkage 
• FV Format variability: e.g. for dates, but also for variability in names (e.g. IBM, 

I.B.M.). 
• SV Coping with structural variability in the data, e.g. wide vs tall format. Also 

variation over time. 
• MD Identifying and repairing missing data 
• AD Anomaly detection and repair 
• Credit: Chris Williams
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ROBUSTNESS AND DATA 
SAMPLES
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RANDOMISATION OF 
DATA
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(Extremely simple randomisation schema: 
pixels are permuted within a given area.)



RANDOMISATION OF 
DATA

!21

Explaining Interval Sequences by Randomization 347

For AR, fixing the autocorrelation r1 produces a sequence that retains the
local temporal structure of the original sequence. The Fourier amplitudes are
almost explained, but the autocorrelation function matches the original only for
short lags. In contrast, fixing a single non-random feature in the Fourier domain
performs much worse in explaining the data.

For periodic, Fourier amplitude randomization yields signals resembling the
original. The majority of the Fourier amplitudes are explained, and the confi-
dence intervals for the autocorrelations follow the course of the original autocor-
relation function, albeit not perfectly. In contrast, fixing a single autocorrelation
lag for periodic does not explain the features of the signal at all.

Fixing Fourier Amplitudes and Autocorrelation Structure. Constrained
randomization of Fourier amplitudes and autocorrelation lags was applied to
both the IBI and word datasets, keeping the non-random Fourier amplitudes
and autocorrelation lags constant. The percentage of Fourier amplitudes and
autocorrelation lags that remain significant under the randomizations are shown
in Tab. 1. For the constrained Fourier amplitude randomization (middle column)
the percentages are low, indicating that the data are well explained. Only the
autocorrelations of the heart failure dataset shows a slightly higher percent-
age of significant features. For the constrained autocorrelation randomization
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(a) The AR sequence randomized by fixing r1.
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(b) The AR sequence randomized by fixing c1.
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(c) The periodic sequence randomized by fixing c7.
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(d) The periodic sequence randomized by fixing r182.

Fig. 5. Constrained randomizations of the toy data. Subplots are as in Fig. 1.

From Henelius et al., ECML PKDD 2013.

• Time series data

original data randomised data

https://doi.org/10.1007/978-3-642-40988-2_22


RANDOMISATION OF 
DATA

!22

A1 B1 C1 D1 E1
A2 B2 C2 D2 E2
A3 B3 C3 D3 E3
A4 B4 C4 D4 E4
A5 B5 C5 D5 E5
A6 B6 C6 D6 E6

• Tabular data 
• Columns are permuted uniformly in random

A6 B3 C5 D4 E1
A5 B2 C6 D3 E5
A1 B1 C1 D1 E3
A4 B5 C3 D2 E4
A3 B4 C4 D5 E6
A2 B6 C2 D6 E2

A2 B3 C3 D5 E1
A4 B5 C2 D1 E6
A5 B4 C4 D6 E5
A1 B2 C6 D3 E5
A6 B5 C1 D2 E2
A3 B5 C5 D4 E3

A4 B6 C5 D3 E5
A6 B5 C3 D1 E6
A2 B1 C6 D6 E1
A3 B2 C4 D4 E4
A5 B3 C1 D5 E3
A1 B4 C2 D2 E2

original data randomised data

Puolamäki et al. 2018.

https://arxiv.org/abs/1805.07725


RANDOMISATION OF 
DATA

!23

A1 B1 C1 D1 E1
A2 B2 C2 D2 E2
A3 B3 C3 D3 E3
A4 B4 C4 D4 E4
A5 B5 C5 D5 E5
A6 B6 C6 D6 E6

• Tabular data 
• Randomisation is constrained by a tile

A6 B1 C5 D4 E1
A3 B3 C3 D3 E5
A2 B2 C2 D1 E3
A4 B4 C4 D2 E4
A5 B6 C1 D5 E6
A1 B5 C6 D6 E2

A6 B5 C1 D5 E1
A2 B2 C2 D1 E6
A4 B4 C4 D6 E5
A3 B3 C3 D3 E5
A1 B1 C5 D2 E2
A5 B6 C6 D4 E3

A5 B5 C6 D3 E5
A3 B3 C3 D1 E6
A4 B4 C4 D6 E1
A2 B2 C2 D4 E4
A1 B1 C5 D5 E3
A6 B6 C1 D2 E2

original data randomised data

Puolamäki et al. 2018.

https://arxiv.org/abs/1805.07725


RANDOMISATION OF 
DATA

• Network data 
• Outputs of simulators
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1

2

1.5 3
5

67

4

43

5
8

     6 

From Puolamäki et al. 2018.

Jets

https://arxiv.org/abs/1811.05974


IS IT SOMETHING REAL?
• Randomisations make it possible to see if observations are 

random (i.e., different from randomised data) 
• Traditional statistical methods are often insufficient - new 

methodology needed!

!25

From Korpela et al., DAMI 2014. From Ahonen et al., Scientific Reports 2018.

https://doi.org/10.1007/s10618-014-0371-0
https://doi.org/10.1038/s41598-018-21518-3


SUPERVISED LEARNING
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SUPERVISED LEARNING 

• Given: 
• training data 
• testing data 
• family of functions 
• loss function 

• Supervised learning problem: 
• Given training data, family of functions, and a loss function, 

find a function such that loss on testing data is minimised. 
• Y discrete: classification, Y continuous: regression 

!27

f : X 7! Y
LD(f)

Dtrain = {(xi, yi)}ni=1

Dtest = {(xn+i, yn+i)}mi=1



“STANDARD” EXAMPLE: 
OLS REGRESSION

• training data: 7 xy-points 
• testing data: 93 xy-points 
• family of functions: 

polynomials of given degree 
• loss function: quadratic loss

!28
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OLS REGRESSION
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• optimisation problem 
• find polynomial of degree k with 

smallest error on training data 
• statistical problem 

• what is the error of the estimate 
of the data and the model 

• learning theoretic problem 
• how do we get best estimate on 

test data 
• algorithmic problem 

• how to make a robust and fast 
algorithm to solve the above 
mentioned problems −1.0 −0.5 0.0 0.5 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

k = 3 train (loss = 0.0297)

x

y

●

●

●

●

●

●

●

g3(x) = −0.05 + 3.81x + 0.37x3 − 5.1x4
sin(πx)

−1.0 −0.5 0.0 0.5 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

k = 3 test (loss = 0.2077)

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

g3(x) = −0.05 + 3.81x + 0.37x3 − 5.1x4
sin(πx)

−1.0 −0.5 0.0 0.5 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

k = 4 train (loss = 0.0159)

x

y

●

●

●

●

●

●

●

g4(x) = −0.28 + 3.74x + 3.26x3 − 4.33x4 − 4.1x5
sin(πx)

−1.0 −0.5 0.0 0.5 1.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

k = 4 test (loss = 0.2716)

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

g4(x) = −0.28 + 3.74x + 3.26x3 − 4.33x4 − 4.1x5
sin(πx)



CLASSIFICATION
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Training and testing data both have 50 data points. Loss is here the number of misclassified data points.



DEEP LEARNING

• Deep learning can be used, e.g., to supervised learning problems as a family of 
functions 

• Long history, currently at the peak of the hype curve (until the next hype) 
• Advantages: 

• Good software libraries: can be used without deep understanding 
• Flexible architecture: lego-like approach to problem solving 
• Good at learning features: for some problems the best-performing approach 

• Disadvantages: 
• Deep learning models are usually “black box”, hard to interpret 
• Training is often computationally expensive  
• Not a golden bullet: subject to same issues as any other method, fully benefiting 

from DL requires also deep CS understanding

!31



LESSON: ON UNDERSTANDING  
OF AI SYSTEMS

• AI systems often contain ML/AI primitives as supervised 
learning components 

• To understand them requires… 
• Knowledge of the topic system is applied on 
• Optimisation, statistics, learning, theory algorithms, machine 

learning etc. 
• Usually this means a multidisciplinary team that works closely 

together

!32



APPLICATIONS TO 
PHYSICAL SYSTEMS

• Supervised learning is used, e.g., to 
- calibrate measurements or 
- classify particle physics events.  

• How to make predictions robust, how to understand them?

!33

Jets

Figure 3

Example jet image inputs from the jet substructure classification problem described in Ref. (46).
The background jets (left) are characterized by a large central core of deposited energy from a
single hard hadronic parton, while the signal jets (right) tend to have a subtle secondary
deposition due to the two-prong hadronic decay of a high-pT vector boson. Use of image-analysis
techniques such as convolutional neural networks allow for powerful analysis of this
high-dimensional input data.

not perfectly regular; thus, some preprocessing is required to represent the jet as an image.

In addition, jet images are typically very sparse. The sparsity can be alleviated by enlarging

pixels, but the harsher discretization sacrifices resolution in ⌘ and �. Given that the jets

themselves are composed of a varying number of reconstructed constituents, each with well-

defined coordinates and parameters, jet tagging algorithms that can work with a variable

number of inputs are desirable.

Several flavor-tagging applications have made use of deep networks trained on variable

length arrays of track parameters. Guest et al. (54) investigated the need for feature-

engineering by defining low-level, mid-level, and high-level features, where the mid- and

high-level features were inspired by typical flavor-tagging variables and derived from a

strict subset of the low-level feature information. The authors found similar discrimination

using fixed-size, zero-padded networks and recurrent architectures, and that the best per-

formance came from using all three levels of features (Figure 4). Both ATLAS and CMS

have since commissioned flavor-tagging neural networks that rely on individual tracks or,

in the CMS case, particle-flow candidates. The ATLAS recurrent-network-based approach

reduces backgrounds by roughly a factor of two when combined with traditional high-level

variables (44,55). CMS’s DeepFlavor (56,57) neural network first embeds each flow candi-

date with a transformation that is shared across candidates, then combines the candidates’

high-level variables in a single zero-padded dense network.

Networks trained on variable-length arrays of jet constituents proved equally useful

in boosted top tagging. In one series of studies, a zero-padded dense network showed

promise (59), but backgrounds were halved by replacing the dense network with a recurrent

network (60). The CMS Collaboration experimented with two variants of the DeepJet (61)

algorithm. The first was similar to DeepFlavor, whereas the second replaced the dense

network with a recurrent neural network. In comparison to a baseline that combined high-

www.annualreviews.org • Deep Learning and Its Application to LHC Physics 11

From Guest et al. 2018.

https://arxiv.org/abs/1806.11484


CALIBRATION OF 
MEASUREMENTS

• Regression functions can be 
used to “calibrate” low-accuracy 
measurements, simulator 
outputs etc. 

• More complex regression more 
unstable it becomes 

• Research problems: 
• How to compute confidence 

intervals for the estimate 
when the ground truth is not 
known? 

• How to understand the 
workings of the regression 
function etc.
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Figure 2: Relative error of mini-SMEAR O3 measure-
ments calibrated against SMEAR. With re-calibration
is re-calibrated every 14 days.

4G networks operation. Our system leverages 5G and edge
computing, as opposed to the cloud, in order to enable �ne-
grained real-time air quality measurements.

5 IMPLEMENTATION
Our prototype sensor array measures gases: ozone (O3), car-
bon monoxide (CO), nitrogen and sulfur dioxide (NO2, SO2);
particulate matter  2.5µm (PM2.5) and  10µm (PM10); tem-
perature, pressure, and relative humidity. The O3 and PM2.5
sensors allow us to compare measurements with the SMEAR
station and monitor measurement drift.
Our MegaSense prototype consists of multiple sensor ar-

rays, a computer receiving themeasurements, and calibration
routines programmed in Matlab. Our demo uses Vaisala’s
AQT4008 as a mini-SMEAR station to highlight the multi-
vendor capabilities of our system. Calibration was performed
between mini-SMEAR and the SMEAR stations, and our re-
sults indicate that re-calibration minimizes the error for O3
and NO2 81% of the time (mean relative error reduced by
25%–45%, results for O3 in Fig. 2). For NO2, the best results
with linear regression were obtained by using only the raw
measurements from the NO2 sensor. For O3, multivariate lin-
ear regression gave the best results, with the raw O3 sensor
output, temperature, and pressure.

6 DEMO SETUP
The demonstration consists of the full prototype system as
described above. We will bring our own extension cord to
power our demo devices (laptop and sensor prototypes). For
maximum e�ect, a large screen should be connected to the
laptop, so the demo can reach a larger audience.
8https://www.vaisala.com/sites/default/�les/documents/
AQT400-Series-Datasheet-B211581EN.pdf

Figure 3: MegaSense demo setup.

Setup time for the demo is roughly 10 minutes.
Interaction: Spectators can inspect the sensors and the net-
work environment and observe how, for example, CO2 read-
ings change during the interaction. The distributed air qual-
ity sensing, calibration, and air quality of the demo room
will be analyzed and explained to the audience.
Our Key Contribution is the sensor calibration method, a
crucial component of the hierarchical low-cost air pollution
monitoring system supported by the 5G network. With the
calibration, our sensor prototype demonstrates that accurate
low-cost air quality measurement is feasible. We will also
explain the signaling aspects and how 5G architecture can
be leveraged to optimize it.
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Relative error in raw (low accuracy) O3 
measurement (dotted amber line) and 
measurement calibrated with a 
regression function using raw 
measurement, temperature, and 
pressure as covariates (solid green line). 
From Lagerspetz et al. 2018.

https://doi.org/10.1145/3241539.3267724


INTERPRETABILITY OF THE 
SUPERVISED LEARNING
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ADVERSARIAL 
EXAMPLES

!36

Szegedy et al. 2013

https://arxiv.org/abs/1312.6199


BLACK BOX VS. 
INTERPRETABLE CLASSIFIERS

Black box 
• Neural networks (DNN, 

RNN, CNN) 
• Ensemble methods 

• Random forests 
• Support vector machines

!37

Interpretable 
• Decision trees 
• Classification rules 

• “Classify to class +1 if x>a, 
otherwise to class -1” 

• Prototype based methods 
• Even these depend on data 

and may be non-interpretable 
• “Classify to class +1 if x>a” 

- choice of a may have a 
drastic effect!Guidotti et al., 2018. A Survey of Methods for 

Explaining Black Box Models. ACM CSUR.

https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009


EXPLAINING THE BLACK 
BOX

• Design an interpretation layer between the classifier and the 
human user 

• Methods can be classified into two categories 
• global explanations 
• local explanations 

• Methods can be black-box dependent or black-box agnostic

!38

black box 
classifier

interpretable 
classifier or 

some features

reverse 
engineering



GLOBAL EXPLAINABILITY

• Global explanations for neural networks date back to the 90s 
• Trepan (Craven et al., 1996) is a black-box agnostic method 

that induces decision trees by querying the black box 
• Trepan’s split criterion depends on entropy and fidelity 
• Further improved in Domingos 1998 and Johansson et al. 

2009.

!39

black box 
classifier

reverse 
engineering

http://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks.pdf
https://doi.org/10.1016/S1088-467X(98)00023-7
https://doi.org/10.1109/CIDM.2009.4938655
https://doi.org/10.1109/CIDM.2009.4938655
https://doi.org/10.1109/CIDM.2009.4938655
https://doi.org/10.1109/CIDM.2009.4938655


UNDERSTANDING AI 
ALGORITHMS

!40

(Extremely simple randomisation schema: 
pixels are permuted within a given area.)

Kai Kai???
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• You can explain black box classifier (or regression function) by 
observing how it behaves on randomised data

Henelius et al., DAMI 2014.

f(x) x1 x2

1 1 0
1 1 0
1 0 1
1 0 1
0 1 1
0 1 1
0 0 0
0 0 0

f(x) f(x*) x*1 x*2

1 1 1 0
1 1 0 1
1 1 1 0
1 1 0 1
0 0 1 1
0 0 0 0
0 0 0 0
0 0 1 1

f(x) f(x*) x*1 x*2

1 0 0 0
1 0 1 1
1 1 1 0
1 0 0 0
0 0 1 1
0 1 1 0
0 1 0 1
0 1 0 1

f(x) = x1 � x2
randomisation 

breaks the classifier
randomisation 
does not break it

shuffle row
s w

ithin a box

shuffle row
s w

ithin a box

!41!41

GLOBAL EXPLANATIONS

http://doi.org/10.1007/s10618-014-0368-8


LOCAL EXPLAINABILITY

• Provide explanation only in the vicinity of a point of interest

!42

black box 
classifier

locally 
interpretable 
explanation

reverse 
engineering



LOCAL EXPLAINABILITY: 
LIME

• LIME optimises for local fidelity

!43

Lime approximates the 
decision boundary at 
the neighbourhood of 
the item to be 
explained by a sparse 
linear model. From 
Ribeiro et al. 2016.

https://doi.org/10.1145/2939672.2939778


LOCAL EXPLAINABILITY: 
LIME

!44

(a) Original Image (b) Explaining Electric guitar (c) Explaining Acoustic guitar (d) Explaining Labrador

Figure 4: Explaining an image classification prediction made by Google’s Inception neural network. The top

3 classes predicted are “Electric Guitar” (p = 0.32), “Acoustic guitar” (p = 0.24) and “Labrador” (p = 0.21)

4. SUBMODULAR PICK FOR
EXPLAINING MODELS

Although an explanation of a single prediction provides
some understanding into the reliability of the classifier to the
user, it is not su�cient to evaluate and assess trust in the
model as a whole. We propose to give a global understanding
of the model by explaining a set of individual instances. This
approach is still model agnostic, and is complementary to
computing summary statistics such as held-out accuracy.
Even though explanations of multiple instances can be

insightful, these instances need to be selected judiciously,
since users may not have the time to examine a large number
of explanations. We represent the time/patience that humans
have by a budget B that denotes the number of explanations
they are willing to look at in order to understand a model.
Given a set of instances X, we define the pick step as the
task of selecting B instances for the user to inspect.

The pick step is not dependent on the existence of explana-
tions - one of the main purpose of tools like Modeltracker [1]
and others [11] is to assist users in selecting instances them-
selves, and examining the raw data and predictions. However,
since looking at raw data is not enough to understand predic-
tions and get insights, the pick step should take into account
the explanations that accompany each prediction. Moreover,
this method should pick a diverse, representative set of expla-
nations to show the user – i.e. non-redundant explanations
that represent how the model behaves globally.

Given the explanations for a set of instances X (|X| = n),
we construct an n⇥ d0 explanation matrix W that represents
the local importance of the interpretable components for
each instance. When using linear models as explanations,
for an instance xi and explanation gi = ⇠(xi), we set Wij =
|wgij |. Further, for each component (column) j in W, we
let Ij denote the global importance of that component in
the explanation space. Intuitively, we want I such that
features that explain many di↵erent instances have higher
importance scores. In Figure 5, we show a toy example W,
with n = d0 = 5, where W is binary (for simplicity). The
importance function I should score feature f2 higher than
feature f1, i.e. I2 > I1, since feature f2 is used to explain
more instances. Concretely for the text applications, we set
Ij =

pPn
i=1 Wij . For images, I must measure something

that is comparable across the super-pixels in di↵erent images,

Figure 5: Toy example W. Rows represent in-

stances (documents) and columns represent features

(words). Feature f2 (dotted blue) has the highest im-

portance. Rows 2 and 5 (in red) would be selected

by the pick procedure, covering all but feature f1.

Algorithm 2 Submodular pick (SP) algorithm

Require: Instances X, Budget B
for all xi 2 X do

Wi  explain(xi, x
0
i) . Using Algorithm 1

end for

for j 2 {1 . . . d0} do

Ij  
pPn

i=1 |Wij | . Compute feature importances
end for

V  {}
while |V | < B do . Greedy optimization of Eq (4)

V  V [ argmaxi c(V [ {i},W, I)
end while

return V

such as color histograms or other features of super-pixels; we
leave further exploration of these ideas for future work.

While we want to pick instances that cover the important
components, the set of explanations must not be redundant
in the components they show the users, i.e. avoid selecting
instances with similar explanations. In Figure 5, after the
second row is picked, the third row adds no value, as the
user has already seen features f2 and f3 - while the last row
exposes the user to completely new features. Selecting the
second and last row results in the coverage of almost all the
features. We formalize this non-redundant coverage intuition
in Eq. (3), where we define coverage as the set function c
that, given W and I, computes the total importance of the
features that appear in at least one instance in a set V .

1139

LIME explains various classifications. From Ribeiro et al. 2016.

https://doi.org/10.1145/2939672.2939778


LOCAL EXPLANATIONS
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“Husky” is classified as “wolf”, because the classifier has learned that 
all pictures of wolves had snow in the background. Therefore, the 
classifier predicts “wolf” if there is snow and “husky” otherwise, 
regardless of other features (animal colour, position, pose etc.). From 
Ribeiro et al., KDD 2016.

(a) Husky classified as wolf (b) Explanation

Figure 11: Raw data and explanation of a bad

model’s prediction in the “Husky vs Wolf” task.

Before After

Trusted the bad model 10 out of 27 3 out of 27
Snow as a potential feature 12 out of 27 25 out of 27

Table 2: “Husky vs Wolf” experiment results.

to work well in the real world, (2) why, and (3) how do
they think the algorithm is able to distinguish between these
photos of wolves and huskies. After getting these responses,
we show the same images with the associated explanations,
such as in Figure 11b, and ask the same questions.

Since this task requires some familiarity with the notion of
spurious correlations and generalization, the set of subjects
for this experiment were graduate students who have taken at
least one graduate machine learning course. After gathering
the responses, we had 3 independent evaluators read their
reasoning and determine if each subject mentioned snow,
background, or equivalent as a feature the model may be
using. We pick the majority to decide whether the subject
was correct about the insight, and report these numbers
before and after showing the explanations in Table 2.
Before observing the explanations, more than a third

trusted the classifier, and a little less than half mentioned
the snow pattern as something the neural network was using
– although all speculated on other patterns. After examining
the explanations, however, almost all of the subjects identi-
fied the correct insight, with much more certainty that it was
a determining factor. Further, the trust in the classifier also
dropped substantially. Although our sample size is small,
this experiment demonstrates the utility of explaining indi-
vidual predictions for getting insights into classifiers knowing
when not to trust them and why.

7. RELATED WORK
The problems with relying on validation set accuracy as

the primary measure of trust have been well studied. Practi-
tioners consistently overestimate their model’s accuracy [21],
propagate feedback loops [23], or fail to notice data leaks [14].
In order to address these issues, researchers have proposed
tools like Gestalt [20] and Modeltracker [1], which help users
navigate individual instances. These tools are complemen-
tary to LIME in terms of explaining models, since they do
not address the problem of explaining individual predictions.
Further, our submodular pick procedure can be incorporated
in such tools to aid users in navigating larger datasets.
Some recent work aims to anticipate failures in machine

learning, specifically for vision tasks [3, 29]. Letting users
know when the systems are likely to fail can lead to an
increase in trust, by avoiding “silly mistakes” [8]. These
solutions either require additional annotations and feature
engineering that is specific to vision tasks or do not provide
insight into why a decision should not be trusted. Further-
more, they assume that the current evaluation metrics are
reliable, which may not be the case if problems such as data
leakage are present. Other recent work [11] focuses on ex-
posing users to di↵erent kinds of mistakes (our pick step).
Interestingly, the subjects in their study did not notice the
serious problems in the 20 newsgroups data even after look-
ing at many mistakes, suggesting that examining raw data
is not su�cient. Note that (author?) [11] are not alone in
this regard, many researchers in the field have unwittingly
published classifiers that would not generalize for this task.
Using LIME, we show that even non-experts are able to
identify these irregularities when explanations are present.
Further, LIME can complement these existing systems, and
allow users to assess trust even when a prediction seems
“correct” but is made for the wrong reasons.

Recognizing the utility of explanations in assessing trust,
many have proposed using interpretable models [27], espe-
cially for the medical domain [6, 17, 26]. While such models
may be appropriate for some domains, they may not apply
equally well to others (e.g. a supersparse linear model [26]
with 5� 10 features is unsuitable for text applications). In-
terpretability, in these cases, comes at the cost of flexibility,
accuracy, or e�ciency. For text, EluciDebug [16] is a full
human-in-the-loop system that shares many of our goals
(interpretability, faithfulness, etc). However, they focus on
an already interpretable model (Naive Bayes). In computer
vision, systems that rely on object detection to produce
candidate alignments [13] or attention [28] are able to pro-
duce explanations for their predictions. These are, however,
constrained to specific neural network architectures or inca-
pable of detecting “non object” parts of the images. Here we
focus on general, model-agnostic explanations that can be
applied to any classifier or regressor that is appropriate for
the domain - even ones that are yet to be proposed.

A common approach to model-agnostic explanation is learn-
ing a potentially interpretable model on the predictions of
the original model [2, 7, 22]. Having the explanation be a
gradient vector [2] captures a similar locality intuition to
that of LIME. However, interpreting the coe�cients on the
gradient is di�cult, particularly for confident predictions
(where gradient is near zero). Further, these explanations ap-
proximate the original model globally, thus maintaining local
fidelity becomes a significant challenge, as our experiments
demonstrate. In contrast, LIME solves the much more feasi-
ble task of finding a model that approximates the original
model locally. The idea of perturbing inputs for explanations
has been explored before [24], where the authors focus on
learning a specific contribution model, as opposed to our
general framework. None of these approaches explicitly take
cognitive limitations into account, and thus may produce
non-interpretable explanations, such as a gradients or linear
models with thousands of non-zero weights. The problem
becomes worse if the original features are nonsensical to
humans (e.g. word embeddings). In contrast, LIME incor-
porates interpretability both in the optimization and in our
notion of interpretable representation, such that domain and
task specific interpretability criteria can be accommodated.
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USE OF SIMULATIONS
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AI FOR SIMULATIONS

• Simulator: “black box” that takes in some parameters and 
outputs some data 
• E.g., atmospheric simulator, simulator of physics collisions 
• They are often stochastic in nature 

• Simulators can be constructed from first principles 
• They are often computationally intensive 
• They cannot be easily converted, e.g., to a probabilistic model
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USING GAN TO SIMULATE 
PARTICLE SHOWERS

• GANs can be used to learn 
generative models and 
sample from them

!48

3

processes. For photon showers, for instance, the mean
per-layer cell variations only show a ⇠ 4% and ⇠ 1%
discrepancy in the first two layers where most energy is
deposited for e/�. This level of agreement is promising,
but it is important to analyze more than the mean energy
pattern to fully study the strengths and weaknesses of the
proposed approach.

FIG. 1. Average � Geant4 shower (top), and average �
CaloGAN shower (bottom), with progressive calorimeter
depth (left to right).

The CaloGAN-generated samples are checked for ad-
equate diversity and lack of direct memorization of the
Geant4 samples used for training. The nearest (by Eu-
clidean distance) Geant4 image is found for each of a
random selection of CaloGAN images in order to verify
the desired characteristics (Fig. 2). The samples show
strong inter- and intra-class diversity and no evidence of
memorization since the closest images do not look exactly
the same.

Shower Shape Description

Geometrically and physically motivated shower shape
variables [32] are used as further validation and introspec-
tion into the capabilities of the CaloGAN to adequately
model and capture non-linear functional representations
of the simulated data distribution (Fig. 3). In fact, it is
desirable for the CaloGAN to recover the target distri-
bution of these 1D statistics.

The network is not shown any shower shape variable
(only pixel values) at training time - therefore, it is en-
couraging to note that the CaloGAN recovers the sim-
ulated data distribution for a variety of shower shapes
across the three particle types. However, certain fea-
tures of some distributions are not well-described. This
is a challenge for the future and will likely require im-
provements to the architecture and training procedure.
Longer trainings of higher capacity architectures have
shown promise in rectifying some of these issues.

FIG. 2. Five randomly selected � showers per calorimeter
layer from Geant4 (top) and their five nearest neighbors (by
euclidean distance) from a set of CaloGAN candidates.

Examining 1D statistics does not probe correlations
between shower shapes or higher dimensional aspects of
the probability distribution. One way to examine the full
shower phase space is to study classification performance,
as described in the next section.

Classification as a Performance Proxy

When training a six-layer, fully-connected classifica-
tion model on the 504-dimensional pixel space of the
concatenated representation of shower energy deposi-
tions across all calorimeter layers, no major classifica-
tion degradation is observed for out-of-domain learning
when trained on the full simulation, i.e. when the net-
work is trained on Geant4 samples but evaluated on
CaloGAN samples. Specifically, although the classifica-
tion accuracy always reaches 99% when evaluating per-
formance on CaloGAN showers – which points to an
over-di↵erentiation among particle types in the Calo-
GAN dataset – in both e+�� and e+�⇡+ discrimination
tasks, the evaluation of the network trained on Geant4
images results in no accuracy decrease in the former task
(⇠ 70%), and only a 2% decrease in the latter (⇠ 97%
versus & 99% accuracy), when compared to the classi-

From Paganini et al. 2018.From Karras et al. 2018.

https://arxiv.org/abs/1705.02355
https://youtu.be/G06dEcZ-QTg


USING DNN TO REPLACE 
CLIMATE SIMULATION
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From Rasp et al. 2018.simulation DNN

https://doi.org/10.1073/pnas.1810286115


GENERATION VS. 
INFERENCE

!50

θ, parameters X, data

generation

inference

P(X|θ), “simulator”



LIKELIHOOD-FREE 
INFERENCE

• Problem: sample posterior P(θ|X) when we can sample from P(X|
θ) (“simulator with parameters θ”) and prior P(θ) but the values of 
P(X|θ) and P(θ) are not known. 

• Bayes rule: P(θ|X)∝P(X|θ)P(θ) 

• Approximate Bayesian Computation (ABC) algorithm, input data X: 
• θ* ~ P(θ) 
• X* ~ P(X|θ*) = SIMULATOR(θ*) 
• if X ≈ X* output θ* 
• repeat 

• Claim: outputs are (approximately) samples from P(θ|X).
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FORWARD MODELLING IN 
COSMOLOGY

!52

JCAP08(2015)043

Figure 5. The one- and two-dimensional marginal distributions of the approximate UFig pa-
rameter posterior. The blue lines denote the true initial parameter configuration. Created with
triangle.py. [65]
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A Package distribution

Detailed documentation, examples and installation instructions for the ABC PMC imple-
mentation can be found on the package website http://abcpmc.readthedocs.org/. The
package is released under the GPLv3 license and has been uploaded to PyPI1 and can be
installed using pip:2

$ pip install abcpmc --user

This will install the package and all of the required dependencies. The development is co-
ordinated on GitHub http://github.com/jakeret/abcpmc and contributions are welcome.

1https://pypi.python.org/pypi/abcpmc.
2www.pip-installer.org/.

– 14 –

From Akeret et al. 2015.
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VISUALISATION

• Extremely large and important topic (NB: I had a course on the topic https://
mycourses.aalto.fi/course/view.php?id=16959…) 

• Human feedback in tuning machine learning model parameters 
• Visual analytics  
• Software tools and techniques 
• Visualisation techniques 
• Human perception 
• Color 
• Cognition 
• User testing 
• Interactivity etc.

!53

https://mycourses.aalto.fi/course/view.php?id=16959
https://mycourses.aalto.fi/course/view.php?id=16959
https://mycourses.aalto.fi/course/view.php?id=16959
https://mycourses.aalto.fi/course/view.php?id=16959


PIXEL-ORIENTED 
TECHNIQUES

• Each attribute value is 
represented by one pixel 
(the value ranges are 
mapped to a fixed colour-
map) 

• The attribute values for 
each attribute are 
represented in separate 
sub-windows

!54

Pixel-oriented techniques (continued) [Pixel-oriented techniques] (55)

1 2 3

4 5 6

Arrangement in spiral form

according to overall distance

from the central point

Attribute values

[K 44].

Pixel-oriented techniques (continued) [Pixel-oriented techniques] (55)

1 2 3

4 5 6

Arrangement in spiral form

according to overall distance

from the central point

Attribute values

[K 44].



PARALLEL COORDINATES

!55

High-dimensional data
Parallel coordinates
• line graphs: x -axis are individual dimensions
• each data point is a line
• somewhat counter-intuitive and may result in cluttered picture
• order of dimensions matter
• but may reveal information that is not visible in other designs
• works better as an interactive tool
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PERCEPTION MATTERS

• Algorithmic accuracy vs. perceptual accuracy 
• Figures from Bertini et al. 2011

!56

with different purposes because they guarantee a larger variety of fea-
tures.

The first example comes from the work of Tatu et al. [48]. The main
goal of this paper is to find interesting projections of n-dimensional
data using image processing techniques. The paper contains several
measures and visualization techniques, here we focus only on the part
dealing with parallel coordinates and one specific metric.

(a) (b)

Fig. 5. Synthetic examples of parallel coordinates and their Hough trans-
form: (a) two well defined clusters with bright areas in the hough plane,
(b) no clear clusters visible, no bright pattern in the hough space [48].

The basic idea of the method is to generate all possible 2D combi-
nations of the original dimensions and evaluate them in terms of their
ability to form clusters in a 2-axis parallel coordinates representation
(see Figure 5). Every pair of axis is evaluated individually using a
standard image processing technique (the Hough transform), which
permits to discriminate between uniform and chaotic distributions of
line angles and positions (for details please refer to the original paper).
Once interesting pairs have been extracted, they are joined together to
form groups of parallel coordinates of a desired (user-defined) size
(e.g., in Figure 6, groups of 4-dimensional parallel coordinates).

Best ranked views using SM
100 98 98

Worst ranked views using SM
0 0.6 1.5

Fig. 6. Ranked list of four-dimensional parallel coordinates. Best ranked
on top, worst ranked on the bottom [48].

Figure 7 presents the pipeline for this example. We can recognize
three main elements: (A) all 2D parallel coordinates are generated in
the data transformation phase; (B) all the alternatives are evaluated
in the image space at the view stage; (C) the algorithm combines the
interesting segments into a list of parallel coordinates (like those in
Figure 6) using the visual mapping stage.

Transformed 
Data

Source
Data

Visual 
Structures

Quality-Metrics-Driven Automation

Views

Data
Transformation visual Mapping

View 
Transformation

User
Rendering

A BC

Fig. 7. Quality metrics pipeline for [48]: (A) generation of alternatives;
(B) evaluation of alternatives (image space); (C) creation of the final
representation.

The technique uses parallel coordinates (PC) as principal visualiza-
tion technique and a list as a meta-visualization. It measures clustering
properties, in the image space, and its main purpose is to find interest-

ing projections. Interaction, in the way it is discussed in the paper, is
very limited if not absent.

The second example comes from the work of Johansson and Jo-
hansson on interactive feature selection [30]. The technique ranks ev-
ery single dimension for its importance using a combination of cor-
relation, outlier, and clustering features calculated on the data. This
ranking is used as the basis for an interactive threshold selection tool
by which the user can decide how many dimensions to keep; weight-
ing the choice with the corresponding information loss presented by
the chart (see Figure 8). Once the user selects the desired number of
dimensions the system presents the result with parallel coordinates and
automatically finds a good ordering using the same data features cal-
culated for ranking the dimensions. The user can also choose different
weighting schemes to focus more on correlation, outliers or clusters.
Figure 9 shows the results of clustering (top) and correlation (bottom).

Fig. 8. Interactive chart to select number of dimensions to keep vs.
information loss [30].

Fig. 9. Top: best ordering to enhance clustering. Bottom: best ordering
to enhance correlation [30].

Figure 10 shows the pipeline for this example. Again we have three
main elements: (A) every single dimension is ranked by the quality
metrics directly from the source data. The reason why the source data
is needed is because the importance measure of a single dimension is
computed taking into account the full set of dimensions (see the paper
for details); (B) the user selects the dimensions guided by the quality
metrics, both the user and the quality metric influence the data trans-
formation process; (C) the system finds the best ordering according
to the weighting scheme proposed by the user producing one specific
visual mapping. The view is presented to the user.

This technique uses parallel coordinates as principal visualiza-
tion. There is no meta-visualization to organize alternative results in a
schema but the interactive chart functions as a way to pilot the genera-
tion of alternatives. It measures clustering, correlation and outliers in
the data space and its main purpose is to find interesting projections
and orderings. Interaction plays a central role in the selection of the
number of dimensions and in the weighting scheme.

The third example is taken from the work of Cui et al. on data
abstraction quality [14]. This paper proposes a technique to create

2209BERTINI ET AL: QUALITY METRICS IN HIGH-DIMENSIONAL DATA VISUALIZATION: AN OVERVIEW 

with different purposes because they guarantee a larger variety of fea-
tures.

The first example comes from the work of Tatu et al. [48]. The main
goal of this paper is to find interesting projections of n-dimensional
data using image processing techniques. The paper contains several
measures and visualization techniques, here we focus only on the part
dealing with parallel coordinates and one specific metric.
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Fig. 5. Synthetic examples of parallel coordinates and their Hough trans-
form: (a) two well defined clusters with bright areas in the hough plane,
(b) no clear clusters visible, no bright pattern in the hough space [48].

The basic idea of the method is to generate all possible 2D combi-
nations of the original dimensions and evaluate them in terms of their
ability to form clusters in a 2-axis parallel coordinates representation
(see Figure 5). Every pair of axis is evaluated individually using a
standard image processing technique (the Hough transform), which
permits to discriminate between uniform and chaotic distributions of
line angles and positions (for details please refer to the original paper).
Once interesting pairs have been extracted, they are joined together to
form groups of parallel coordinates of a desired (user-defined) size
(e.g., in Figure 6, groups of 4-dimensional parallel coordinates).
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Fig. 6. Ranked list of four-dimensional parallel coordinates. Best ranked
on top, worst ranked on the bottom [48].

Figure 7 presents the pipeline for this example. We can recognize
three main elements: (A) all 2D parallel coordinates are generated in
the data transformation phase; (B) all the alternatives are evaluated
in the image space at the view stage; (C) the algorithm combines the
interesting segments into a list of parallel coordinates (like those in
Figure 6) using the visual mapping stage.
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The technique uses parallel coordinates (PC) as principal visualiza-
tion technique and a list as a meta-visualization. It measures clustering
properties, in the image space, and its main purpose is to find interest-

ing projections. Interaction, in the way it is discussed in the paper, is
very limited if not absent.

The second example comes from the work of Johansson and Jo-
hansson on interactive feature selection [30]. The technique ranks ev-
ery single dimension for its importance using a combination of cor-
relation, outlier, and clustering features calculated on the data. This
ranking is used as the basis for an interactive threshold selection tool
by which the user can decide how many dimensions to keep; weight-
ing the choice with the corresponding information loss presented by
the chart (see Figure 8). Once the user selects the desired number of
dimensions the system presents the result with parallel coordinates and
automatically finds a good ordering using the same data features cal-
culated for ranking the dimensions. The user can also choose different
weighting schemes to focus more on correlation, outliers or clusters.
Figure 9 shows the results of clustering (top) and correlation (bottom).

Fig. 8. Interactive chart to select number of dimensions to keep vs.
information loss [30].

Fig. 9. Top: best ordering to enhance clustering. Bottom: best ordering
to enhance correlation [30].

Figure 10 shows the pipeline for this example. Again we have three
main elements: (A) every single dimension is ranked by the quality
metrics directly from the source data. The reason why the source data
is needed is because the importance measure of a single dimension is
computed taking into account the full set of dimensions (see the paper
for details); (B) the user selects the dimensions guided by the quality
metrics, both the user and the quality metric influence the data trans-
formation process; (C) the system finds the best ordering according
to the weighting scheme proposed by the user producing one specific
visual mapping. The view is presented to the user.

This technique uses parallel coordinates as principal visualiza-
tion. There is no meta-visualization to organize alternative results in a
schema but the interactive chart functions as a way to pilot the genera-
tion of alternatives. It measures clustering, correlation and outliers in
the data space and its main purpose is to find interesting projections
and orderings. Interaction plays a central role in the selection of the
number of dimensions and in the weighting scheme.

The third example is taken from the work of Cui et al. on data
abstraction quality [14]. This paper proposes a technique to create
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 “Controllability and interaction are two 
concepts that are mostly absent from 

dimensionality reduction." 

Verleysen, Lee, 2013

https://doi.org/10.1007/978-3-642-42054-2_77


MODELING USER’S 
KNOWLEDGE AND OBJECTIVES

• User's knowledge: we can model user's knowledge as data distribution 
• User's objectives: We can also model the parts of distributions are 

interesting. 
• Dimensionality reduction criteria: show the user the interesting things 

(wrt. objectives) that he or she does not already know (wrt. knowledge) 
• Puolamäki et al. 2018 and references therein. See Sacha et al. 2017 

for review of other approaches.

!60

A hypothesis pair is formed by tiles. A hypothesis together 
with the background tiles defines a data distribution. 
Differences between the distributions show unexpected 
differences between the two hypotheses.

Summary
Tiler is a software tool for interactive visual explorative 
data analysis realising the Human-Guided Data 
Exploration Framework.  The goal is to explore the data, 
while taking the user's background knowledge and 
objectives into account. The exploration is iterative and 
the user gradually builds up an understanding of the 
data.

Human-Guided Data Exploration

Selected Publications
Puolamäki, Oikarinen, Atli, Henelius. Human-guided data exploration using randomization. arXiv:
     1805.07725 [stat.ML]
Puolamäki, Oikarinen, Kang, Lijffijt, De Bie. Interactive Visual Data Exploration with Subjective  
     Feedback: An Information-Theoretic Approach. Proc ICDE 2018. arXiv:1710.08167 [stat.ML]
Puolamäki, Papapetrou, Lijffijt. Visually controllable data mining methods. In Proc ICDMW 2010.
Puolamäki, Kang, Lijffijt, De Bie. Interactive Visual Data Exploration with Subjective Feedback. In 
     Proc ECML PKDD 2016.

user

data-drivenhypothesis-driven

hypotheses

A B
patterns model

background
visualisation

Tiler: Software for Human-Guided

This work is funded by the Academy of Finland,
decisions 319145 and 313513.

Andreas Henelius, Emilia Oikarinen, Kai Puolamäki

Data Exploration
https://github.com/aheneliu/tiler

University of Helsinki, Department of Computer Science
Aalto University, Department of Computer Science

The system must take into account what the user
(1) currently knows (background knowledge)
(2) wants to know (hypotheses)

Then (3) show the user the most informative data view, 
must be fast for smooth interaction.

(1) Background knowledge

Unconstrained

- The user knows only the marginal distributions
- The initial distribution is as random as possible

https://youtu.be/fqKLjMwJHnk

only marginals known user's background model
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Modeling background knowledge using tiles

A1
A2
A3
A4
A5

B1
B2
B3
B4
B5

C1
C2
C3
C4
C5

D1
D2
D3
D4
D5

A2
A3
A5
A1
A4

B3
B5
B1
B4
B2

C1
C3
C5
C4
C2

D5
D2
D4
D3
D1

- marginals preserved
- attributes permuted independently
- all relations are broken

Constrained with a tile
- marginals still preserved
- attributes in the tile permuted together
- relations inside the tile preserved

attributes A ... D

A1
A3
A2
A5
A4

B1
B3
B2
B4
B5

C5
C3
C2
C4
C1

D3
D4
D1
D5
D2

A1
A3
A2
A5
A4

B1
B3
B2
B4
B5

C5
C3
C2
C4
C1

D3
D4
D1
D5
D2

How to make the user's background model match the real 
data?

(2) Modeling hypotheses using tiles

vs

A1
A2
A3
A4
A6

B1
B2
B3
B4
B6

C1
C2
C3
C4
C6

D2
D4
D1
D5
D3

A2
A1
A4
A3
A5

B1
B2
B4
B3
B5

C1
C2
C4
C3
C6

D4
D6
D5
D2
D1

Are there relations between the attribute
groups  {A, B} and {C} for items {3, 4, 5, 6}
not explained by the background tile?

A5 B5 C5 D6 A6 B6 C5 D3

vs

A5
A4
A3
A2
A1

B5
B4
B3
B2
B1

C5
C4
C3
C2
C1

D5
D4
D3
D2
D1

A3
A5
A4
A6
A2

B6
B3
B2
B4
B1

C5
C3
C2
C4
C1

D4
D1
D5
D6
D3

Are there relations between the attributes
not explained by the background tile?

A1 B5 C6 D2A6 B6 C6 D6

vs

A2
A5
A1
A6
A4

B2
B5
B1
B6
B4

C2
C5
C1
C6
C4

D2
D5
D1
D6
D4

A3
A5
A4
A6
A2

B6
B4
B2
B3
B1

C1
C4
C2
C3
C5

D4
D1
D5
D6
D3

Are there any relations between the
attributes?

A1 B5 C6 D2A3 B3 C3 D3

(3) Most informative view
Informative view

C

D

C

D

A

B

A

B

Uninformative view

vs vs

Hypothesis tiles are blue Background tiles are orange

A1
A2
A3
A4
A5

B1
B2
B3
B4
B5

C1
C2
C3
C4
C5

D1
D2
D3
D4
D5

A4
A2
A5
A3
A1

B1
B3
B2
B4
B5

C5
C3
C2
C4
C1

D3
D4
D1
D5
D2

Merging tiles
- overlapping tiles can be expressed
  equivalently without overlap
- for computational efficiency

The Human-Guided Data Exploration Framework

Show the user a view maximising the difference between the 
two distributions, see (2) above.

A hypothesis pair is formed by tiles. A hypothesis together 
with the background tiles defines a data distribution. 
Differences between the distributions show unexpected 
differences between the two hypotheses.

Summary
Tiler is a software tool for interactive visual explorative 
data analysis realising the Human-Guided Data 
Exploration Framework.  The goal is to explore the data, 
while taking the user's background knowledge and 
objectives into account. The exploration is iterative and 
the user gradually builds up an understanding of the 
data.

Human-Guided Data Exploration

Selected Publications
Puolamäki, Oikarinen, Atli, Henelius. Human-guided data exploration using randomization. arXiv:
     1805.07725 [stat.ML]
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     Feedback: An Information-Theoretic Approach. Proc ICDE 2018. arXiv:1710.08167 [stat.ML]
Puolamäki, Papapetrou, Lijffijt. Visually controllable data mining methods. In Proc ICDMW 2010.
Puolamäki, Kang, Lijffijt, De Bie. Interactive Visual Data Exploration with Subjective Feedback. In 
     Proc ECML PKDD 2016.
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https://github.com/aheneliu/tiler
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The system must take into account what the user
(1) currently knows (background knowledge)
(2) wants to know (hypotheses)

Then (3) show the user the most informative data view, 
must be fast for smooth interaction.

(1) Background knowledge

Unconstrained

- The user knows only the marginal distributions
- The initial distribution is as random as possible

https://youtu.be/fqKLjMwJHnk

only marginals known user's background model
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Modeling background knowledge using tiles

A1
A2
A3
A4
A5

B1
B2
B3
B4
B5

C1
C2
C3
C4
C5

D1
D2
D3
D4
D5

A2
A3
A5
A1
A4

B3
B5
B1
B4
B2

C1
C3
C5
C4
C2

D5
D2
D4
D3
D1

- marginals preserved
- attributes permuted independently
- all relations are broken

Constrained with a tile
- marginals still preserved
- attributes in the tile permuted together
- relations inside the tile preserved

attributes A ... D

A1
A3
A2
A5
A4

B1
B3
B2
B4
B5

C5
C3
C2
C4
C1

D3
D4
D1
D5
D2

A1
A3
A2
A5
A4

B1
B3
B2
B4
B5

C5
C3
C2
C4
C1

D3
D4
D1
D5
D2

How to make the user's background model match the real 
data?

(2) Modeling hypotheses using tiles

vs

A1
A2
A3
A4
A6

B1
B2
B3
B4
B6

C1
C2
C3
C4
C6

D2
D4
D1
D5
D3

A2
A1
A4
A3
A5

B1
B2
B4
B3
B5

C1
C2
C4
C3
C6

D4
D6
D5
D2
D1

Are there relations between the attribute
groups  {A, B} and {C} for items {3, 4, 5, 6}
not explained by the background tile?

A5 B5 C5 D6 A6 B6 C5 D3

vs

A5
A4
A3
A2
A1

B5
B4
B3
B2
B1

C5
C4
C3
C2
C1

D5
D4
D3
D2
D1

A3
A5
A4
A6
A2

B6
B3
B2
B4
B1

C5
C3
C2
C4
C1

D4
D1
D5
D6
D3

Are there relations between the attributes
not explained by the background tile?

A1 B5 C6 D2A6 B6 C6 D6

vs

A2
A5
A1
A6
A4

B2
B5
B1
B6
B4

C2
C5
C1
C6
C4

D2
D5
D1
D6
D4

A3
A5
A4
A6
A2

B6
B4
B2
B3
B1

C1
C4
C2
C3
C5

D4
D1
D5
D6
D3

Are there any relations between the
attributes?

A1 B5 C6 D2A3 B3 C3 D3

(3) Most informative view
Informative view

C

D

C

D

A

B

A

B

Uninformative view

vs vs

Hypothesis tiles are blue Background tiles are orange

A1
A2
A3
A4
A5

B1
B2
B3
B4
B5

C1
C2
C3
C4
C5

D1
D2
D3
D4
D5

A4
A2
A5
A3
A1

B1
B3
B2
B4
B5

C5
C3
C2
C4
C1

D3
D4
D1
D5
D2

Merging tiles
- overlapping tiles can be expressed
  equivalently without overlap
- for computational efficiency

The Human-Guided Data Exploration Framework

Show the user a view maximising the difference between the 
two distributions, see (2) above.

https://arxiv.org/abs/1805.07725
https://doi.org/10.1109/TVCG.2016.2598495


MOST INFORMATIVE 
VIEWS

• Tell me something I don’t already know: show the user the 
largest differences between the background knowledge and the 
data

!61

Puolamäki et al. 
2018, In Proc ICDE 
2018. 

https://github.com/
edahelsinki/sideR  

https://doi.org/10.1109/ICDE.2018.00112
https://doi.org/10.1109/ICDE.2018.00112
https://doi.org/10.1109/ICDE.2018.00112
https://github.com/edahelsinki/sideR
https://github.com/edahelsinki/sideR


SOFTWARE TOOLS FOR 
AI

• One of the major developments during last decades is introduction of software 
tools to implement AI methods 
• PhD no longer needed to run a complex algorithms (deep learning etc.) 
• PhD may still be needed to understand what happens 

• Scientific publications often include open source libraries to implement the 
methods 

• Take-away:  
• use these tools 
• contribute to these tools 
• recognise more the general computational problems and solve them 

instead of separately. tacking specific problems 
• Examples: Keras for deep learning, Stan for probabilistic reasoning etc.
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• Probabilistic programming 
• Reliable inference from limited data 
• Uncertainty quantification for (autonomous) decision-making 
• Democratises AI: replaces difficult mathematical derivations with 

programming tasks 
• Stan (10.000+ users) mc-stan.org

!63


