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1 INTRODUCTION
Simulators are used in many science disciplines. These commonly
require intensive calculations and / or lots of small scale interactions,
which makes the simulators really slow [14]. For other problems a
lack knowledge or resources prohibits building simulators in the
first place. With the recent boom in machine learning a relevant
question is if machine learning could provide approximative solu-
tions to these problems?

The machine learning method that has gotten the most atten-
tion recent years is deep learning, which usually refers to neural
networks with multiple hidden layers. Neural networks could be
particularly well suited for simulation tasks, since they are univer-
sal function approximators. In other words you can approximate
any function to any desired precision with a neural network given
enough capacity [5]. Furthermore, neural networks are by nature
very parallel and can utilise accelerators, such as GPU:s, for speed
boosts of several orders of magnitude [14].

The big drawback of using deep learning is the lack of insight in
what the model is actually doing. This means that there is no way
of analytically verifying that the model is correct, the validation
has to happen statistically. This is the topic of this review, exploring
how to validate deep learning simulations.

The validation methods gathered in this review are from both
simulation and non-simulation sources. This means that many of
the methods are designed for a specific type of model, type of
data, or domain. But usually they can be adopted to work in other
settings.

On a high-level, the training of a deep learning simulators falls
into one of two categories, supervised or generative. For supervised
training you start by measuring the inputs and outputs of the sys-
tem, either the real world or a scientific simulator. Then you train
the neural network to infer the output from the input. Generative
models on the other hand start from little to no information and
tries to generate realistic outputs.

In a supervised setting you have access to the ground truth,
which makes validation easier. So in this review will emphasise the
more difficult case, generative models. Note that validation methods
for generative models also works on supervised models, having
access to the truth doesn’t change anything.

Generative models are useful when you cannot capture enough
information about the initial situation, or the process is inherently
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non-deterministic, like in high-energy physics [1]. There are multi-
ple architectures for generative models to choose from, like varia-
tional auto-encoders [9]. But recently GAN:s [2] (Generative Adver-
sarial Networks) have gotten a lot of attention due to their ability
to generate very realistic samples [7].

This review is structured as follows. In Sec. 2 is a short overview
of how GAN:s work, since they are state-of-the-art for generative
models. That provides an insight into the problems a generative
model can face and serves as something the validation methods
can relate to. The main focus of the review is in Sec. 3 where the
validation methods are presented. Finally in Sec. 4 is discussed how
domain knowledge can be utilised even before the validation step
for increased quality.

2 GENERATIVE ADVERSARIAL NETWORKS
The lack of ground truth makes training of generative models dif-
ficult. Instead of relying on the data to provide feedback for the
training you have to do it yourself. However it can be quite difficult
to design a loss function that accurately measures the quality of the
generated samples. Generative adversarial networks (GAN) solve
this by introducing a second neural network.

GAN:s can be described as a game between two neural networks,
a generator and a discriminator. The task of the generator is to
generate samples from (mostly) random noise. The discriminator is
trained to classify real and generated samples, through supervised
training. The result of the discriminator is in turn used to train the
generator to generate more real-like samples. This game ends at
a Nash equilibrium, when the generator cannot improve further
because the discriminator cannot separate real samples from fake
samples [2].

Formally this can be expressed with the optimisation of the
(value-) function in Eq. 1. Here D is the discriminator, G the gen-
erator, x the real samples, and z the (random) latent vector used
as input to the generator. Note that this definition is not limited to
any specific kind of domain, data, or model. This enables the GAN
architecture to be applied to any generative task.

min
G

max
D

V (D,G ) =

Ex∼pdata (x )[logD (x )] + Ez∼pz (z )[log(1 − D (G (z)))]
(1)

The main objective for a generative model is to create a diverse
set of high-quality samples. For simulations this translates into
creating realistic samples with the same variety as the training
samples (with similar probability distributions). Fortunately the
Nash equilibrium of GAN:s should provide just that, but there are
problems that can arise during training which stops the GAN from
reaching that point.
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The three main types of GAN failures are; non-convergence
when the training never stabilises, model collapse when the gen-
erator only produces a few different samples, and memory-GAN
when the generator exactly replicates the training data. The causes
of these failure states are not always known and can be anything
from insufficient data to the generator and discriminator getting
out of balance.

Since the generator updates are dependent on the discriminator
gradients this is a likely source of problems. Indeed even the first
GAN paper [2] offered an alternative definition of the loss function
for the generator which avoids saturation and vanishing gradients.
More recent findings show that adding gradient normalisation to
the discriminator helps with convergence [12].

There have been a lot of recent advances in GAN:s that are worth
mentioning [11, 13, 15, 18] and also some from the wider deep
learning research [3, 6, 8] that are advantageous to use with GAN:s.
But since this review focuses on validation they won’t be discussed
further. The failure modes, on the other hand, is something the
validations in the next section should be able to detect.

3 VALIDATION
The biggest challenge with deep learning is that it is almost impos-
sible to get any useful information from the raw values that the
model has learned (this is known as the black box problem). With
simulators this is further compounded by the fact that we don’t
know what the "best" approximations are (otherwise we wouldn’t
need deep learning). This means that you have to rely on empirical
methods for validating your simulator. Fortunately there is lots of
approaches that can be, and have been, used.

If you have access to the ground truth, as is the case with su-
pervised training, then you can use normal error and accuracy
measures. You can even prioritise the correctness for different situ-
ations, outcomes, and variables differently. Often these preferences
can be formulated as a loss function that you then you can use to
directly train your model with.

The more difficult, and interesting, case is when you don’t have
the truth to compare with, such as with generative models. An ob-
vious way of validating is to manually inspect the results. The best
outcome would be if the simulator is able to trick human experts
[10]. Manual inspection is very time consuming, compared to auto-
mated methods, so fewer samples tend to be examined. Combining
humans with few samples can lead to very subjective and biased
conclusions, which makes comparison between models unreliable.
But manual inspection is still needed, since if a deep learning simu-
lator fails an expert examinations then it is obviously not up to the
task.

Automated validations are based on calculations. This means a
lot of samples can be inspected and the results are not subjective,
but they might still be biased! The bias comes from potential as-
sumptions and heuristics used in the calculations. This is why it
is preferable to use many, if not all the methods presented below.
Another advantage with automated validations is that the results
might be numerical values, which enables comparisons between
different simulators (or the same simulator at different stages of
training).

If the validation calculates some quality measure of the samples,
then as the simulator improves, so should the quality score. However,
the goal of a simulator is to generate realistic data and realistic data
might not always correspond to having a high quality score. An
alternative is to do a comparison between real and generated data,
then you get a distance. The more the generated samples resembles
real data the smaller the distance. Both scores and distances can be
used to measure and compare simulators, but since distances rely
on real data instead of some heuristic they might be less biased.

The most simple validation is to measure the distance between
the distribution of real data and generated data for each variable.
Distributions are used for all the distance measures presented in
this review because we are interested in the simulator as a whole,
not just one single sample. Distributions also show if the simulator
is skewed in any systematic way (remember the lack of diversity
from the previous section).

Comparing variables on their own is however usually insufficient,
since that doesn’t account for dependencies, e.g. the colour of a
single pixel doesn’t matter without seeing the larger picture. To
remedy this, more complicated, higher level, features are used, often
with the help of domain knowledge. An example of this is when
Paganini et al. [14] calculated the geometrical and physical shapes
of particle showers for their particle simulator (and compared the
distribution of those).

In most domains there are some rules or constraints that the real
world follows. The same constraints must of course be followed by
deep learning simulators. If these constraints can be calculated then
they can be used to validate models. One of the most important
constraints in physical systems is conservation of energy, which
Rasp et al. [16] noted happening even without explicitly adding
that to their model.

One of the reasons the GAN architecture uses a discriminator
is because the problem of determining what is a good sample is in
itself a difficult problem. Even though the discriminator is trained
to rate samples it cannot be used for validation, since it is a part
of the simulator and has the same biases as the generator. Using
a neural network in the validation process is, however, the idea
behind the Inception Score [18]. The Inception Score uses an existing
(unrelated) classifier to calculate some qualities about the samples.

The Inception Score is designed with a specific multi-class clas-
sifier in mind, and in many domains nothing equivalent exists. It
is also not a distance so no comparison to real data is made. Thus
an improvement has been suggested, the Fréchet Inception Distance
(FID) [4]. FID compares the datasets by calculating the Fréchet dis-
tance between the distributions of means and covariates at the last
hidden layer in an "existing" classifier (which doesn’t need to be
multi-class).

A similar idea has been used with deep learning particle sim-
ulations [14]. First two classifiers were trained, one only on real
data and one only on generated data. Then they were evaluated
with generated data or real data respectively. For both evaluation
to yield high accuracy the generated samples needs to be diverse
and of high-quality [19].

Using another black box to validate a black box seems counter-
intuitive at first, but this is just another way of constructing high
level features. When high level features where mentioned above
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they were designed by a human, usually with some domain knowl-
edge. This limits them to features that person is able to think of,
whichmight not cover everything needed for realistic data. By using
a black box we construct new, but unknown, high level features.

The only thing we can say about those features is that they are
somewhat relevant for the domain in question, since they are used
by the classifier (especially FID). But the use of high level features
is still justified, even if they are unknown, because if generated data
really resembles real data then the generated data should resemble
real data also for those high level features. Note that I’m not arguing
for replacing transparent validation methods, but rather augment
them (you can never have too many validation options).

What classifier-based validation fails to uncover is if the model
has memorised the training data, only generating samples from
the training data [11]. This would of course yield short distances,
but the model would still not be a good simulator. Paganini et al.
[14] solved this by manually comparing generated samples to the
closest real samples (according to sample distances, e.g. euclidean,
not distribution distances).

Whenever you train a deep learning simulator you do it with
a goal in mind. That goal could also be used to verify that the
simulator accomplishes its task. For example if the goal is to improve
medical classifiers by generating more cases of rare diseases [10, 17]
then the goal metric would be to set aside a validation set (before
training) that would be used to measure how much an classifier
improves when trained on both real and generated data, compared
to the same classifier trained only on real data.

4 UTILISING DOMAIN KNOWLEDGE
Domain knowledge could of course be utilised earlier in the pro-
cess, yielding better simulators. This process starts with the model
design, you want yo select the right kind of deep learning model,
e.g. convolutional neural networks for images. This selection is
dependent on the data, but requires more deep learning knowledge
than domain knowledge.

Since training a simulator end-to-end is difficult, the training can
be guided by giving the model a domain specific auxiliary task. The
auxiliary task helps the training focus on the underlying structure,
even before the simulator has gotten good enough to need it. An
auxiliary task for GAN:s could be to add a supervised classification
task to the discriminator, e.g. classifying the particle types in the
real data [1].

A related idea is semi-supervised learning [18]. Here the simula-
tor is given additional information, e.g. a category, that it tries to
adhere to. If the model is a GAN then the same information is given
to both networks for both real and generated data. This guides the
discriminator to learn the connection between that information
and the final results. A big advantage with semi-supervised simula-
tors is that you can influence what kind of samples you want it to
generate [17].

Sometimes there is knowledge about how to best accomplish a
part of the simulation, either exactly or heuristically. If this part
is especially difficult or crucial then you might not want the deep
learning to handle it. The solution is to build a pipeline consisting
of both learned and predefined steps. Lau et. al. [10] successfully
used this technique to generate scars on healthy patients. They

used a three step process; first they selected the area with a GAN,
then filled it with new tissue based on a heuristic, and finally they
used another GAN to add realistic details to and around the new
tissue.

5 CONCLUSIONS
Deep learning is under very active development. This can especially
be seen in the progress of generative models and the applications to
other scientific fields.When it comes to deep learning simulators we
have seen a lot of promising works, but some of them also provide
convincing results.

The lack of transparency with deep learning also affects simula-
tors. From a scientific point of view the difficulty of extracting the
learned knowledge is really unfortunate since it limits the appli-
cability of the models. As a consequence deep learning simulators
are only being used to augment datasets or data collection. That
doesn’t mean that deep learning simulators are useless, they can
still provide massive speed-ups or help when real samples are rare
or expensive to acquire.

The use of deep learning simulators comes down to whether you
can trust the simulators. The easiest way to build trust is through
rigorous and diverse testing, and this review have explored some
of the methods that have been used to validate models.
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