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1 INTRODUCTION

Urban air pollution is a major concern in modern cities and de-
veloping countries. Ambient pollutants considerably affect human
health, especially causing a variety of respiratory diseases, such as
asthma and lung cancer. Additionally, air pollution is responsible
for environmental problem, for instance acid rain and the deple-
tion of the ozone layer. As a result, air pollution monitoring is of
paramount importance.

Nowadays, urban air pollution is monitored by networks of static
measurement stations (hereinafter called reference stations). Refer-
ence stations used today has been demonstrated to meet the data
quality and trace-ability requirements of international programmes
such as World Meteorological Organization (WMO)/ Global At-
mosphere Watch (GAW), and therefore are highly reliable. They
accurately measure a wide range of air pollutants using traditional
analytical instruments, such as mass spectrometers and gas chro-
matographs. One example in Finland is Stations Measuring Earth
Surfaces and Atmosphere Relations (SMEAR).

The disadvantages of these complex measurement systems are
their large size, high price, and complex maintenance. The exten-
sive cost of acquiring and operating these stations severely limits
the number of installations. Therefore, it is necessary to deploy the
massive use of low-cost sensors, where they are usually defined
as an initial capital cost reduction of at least one order of mag-
nitude over reference instruments, to increase the measurement
coverage, and hence to better understand the current situation. The
data quality of low-cost sensors is highly variable and real-word
performance can vary very much due to different data correction
and calibration approach [Lewis et al. 2018].

2 LOW-COST SENSORS AND CURRENT
CHALLENGES

The gaseous air pollutants that are typically measured using sen-
sors include nitrogen monoxide (NO), nitrogen dioxide (NO2), ozone
(03), sulphur dioxide (SO2), carbon monoxide (CO), and total volatile
organic compounds (VOCs). Aerosols such as particulate matter
(PM) are also measured together with other gaseous air pollutants.
They are important due to their direct and indirect adverse health
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and ecosystem effects and their role as precursors to form secondary
pollutants.

Measurements of the gaseous pollutants are typically reported
either as a mixing ratio (e.g. ppm or ppb), or in mass concentration
units (e.g. ug/m3). It is also relevant to note that sensor performance,
e.g. sensitivity and measurement error might be different not only
between sensors but also between pollutants measured by the same
sensor. Below shows a list of types of sensors and Figure 1 shows a
typical low-cost sensor[Spinelle et al. 2013].

Anemometer

PM sensor inlet
\ Weatherproof

enclosure

Cellular
communications

Gas sensor (CO,)
PM sensor

Gas sensor (VOCs) Flash drive

Temperature and storage
humidity

Gas sensors

Power (NO, CO, NO,, SO,, 0;)

connector

Figure 1: A typical low-cost sensor gadget measuring differ-
ent parameters at one time [Lewis et al. 2018].

e Electrochemical (EC) sensors: They have interferences

with relative humidity and temperature, requiring additional

measurements to be made in order to obtain reliable results.

Metal-oxide semiconductor (MOS) sensors: This rela-

tionship is in general non-linear in nature and these sensors

have some sensitivity to changing environmental conditions,
and interferences from other gases that may be present.

e Miniature photo-ionization detectors (PIDs): Only
some compounds are efficiently ionized (and detected) while
other compounds are less efficiently ionized (and less effi-
ciently detected).

Apart from the sensor-specific problems listed above, problems
like short-term and long-term drifting, cross-sensitivity between
NO2 and O3, size-detection limit for ultrafine particles, too low
detection limit for SO2, particle hygroscopicity effect for PM, and
so, are also current challenges for low-cost sensors.
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3 LABORATORY AND IN-FIELD
CALIBRATION

Calibration of a low-cost sensor is needed to establish a relation-
ship between the output of a low-cost sensor and a measurement
standard, where the measurement standard in this context can be
either a calibrated reference instrument or a gas/particle reference
material.

Based on the literature from over the past ten years, laboratory-
based sensor calibrations performed under controlled laboratory
conditions tend to produce better analytical agreements between
low-cost sensors and reference instruments than that in the field of
naturally varying atmospheric composition.

Laboratory calibrations are useful for testing the functionality
of the sensors. The laboratory experiments are usually designed
that a dynamic system is needed for generating, pre-mixing and
delivering a known concentration of a test gas or vapour in air. An
exposure chamber is used for the test of sensors, under indepen-
dently controlled airflow, concentration, temperature and relative
humidity of the test gas and of any added interference [Spinelle
et al. 2013].

In-field calibrations of gas phase sensors are widely considered
as the more direct and appropriate method for comparing different
measurement approaches in the real world, although sensor perfor-
mance can differ when used in a different locations and exposed
under different concentration levels. Due to different environmental
and meteorological factors including ambient temperature, humid-
ity and also other common atmospheric compounds, there is a
need to perform temperature and humidity corrections and also
cross-sensitivities among other atmospheric variables [Spinelle et al.
2013].

4 CALIBRATION METHOD

At present, many users rely on factory calibration settings, conver-
sion from light absorption, voltage, or conductivity, as the main
method of calibration. However, there is limited evidence to sug-
gest, at least for the current generation of low-cost sensors, this is
sufficient to provide long-term accurate data across the possible
environments. To determine whether or not a factory calibration
is sufficient, a validation of the data should be performed in an
environment similar to the one in which the low-cost sensors will
be used. Linear regression and multiple linear regression are more
commonly used, while modern machine learning methods, for ex-
ample Artificial Neural Network (ANN) and random forest, are on
the rise.

4.1 Linear regression and Multiple linear
regression

For each sensor a calibration function was established by assuming

the linearity of the sensor responses with reference measurement

for each pollutant. Ordinary linear regression was used with the

minimization of square residuals of the sensor responses versus

reference measurements. The calibration functions were of the type

Rs=a-X+0b, (1)

where Rs represents the sensor responses and X is the correspond-
ing reference measurements of air pollutant. Finally, the measuring
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function, the converse equation
X = (Rs - b)/a, ()

was applied to all sensor responses in order to predict air pollutant
levels.

Multiple linear regression has similar principles but involves
in more parameters than the linear regression. The additional pa-
rameters are usually meteorological data, such as relative humidity,
temperature and wind speed, and gas compounds with which chem-
ically interact [Duvall et al. 2016; Johnson et al. 2018; Spinelle et al.
2015].

4.2 Artificial Neural Network and Random
Forest

The advantage of using machine learning is to save plenty of time
in selecting features. Meanwhile, it can easily overfit the model by
including everything. ANN receives a number of inputs and also
hidden layers with hidden units. The weighted sum of the inputs is
formed to compose the activation of the unit. The activation signal is
passed through an activation function to produce the output of the
unit. Random Forest works by constructing an ensemble of decision
trees using a training data set and the users have to specifies the
maximum number of trees that make up the forest. In both methods,
performance can be improved by adjusting the number of hidden
layers and number of trees, respectively. However, the black boxes
in the models are usually discreet and not open to public.

The use of ANN for calibration purpose appears to be the most
efficient in terms of uncertainties with a smaller drift over time on
03 and NO2. Humidity/temperature dependence was also corrected,
without the needs of such measurements [Spinelle et al. 2015].

The use of random forest was proven to work better than tradi-
tional regressions, especially on CO2, NO2 and O3. It also seems
to eliminate the cross-sensitive effect if we include additional mea-
surement of air pollutants [Zimmerman et al. 2018].

4.3 Calibration evaluation

Performance comparison/calibration is often defined by the cor-
relation statistics between the reference and sensor time series,
the linearity of the sensors to the compound concentrations and
the variability of the sensors compared to reference. Many studies
currently use a combination of the correlation coefficient (R2), root
mean squared error (RMSE), and mean absolute error (MAE) to de-
scribe their model performance. They are the most direct statistical
description for the calibration performance. However, inter-sensor
statistics, low-cost sensors and reference comparative pattern anal-
ysis and performance analysis on seasonal trend, which are less
common in the current literature database, can be carried out to
see their long-term performance [Hasenfratz et al. 2012].

4.4 Quality control of sensors

Currently, there is a set of guidelines to regulate the data quality
control in the framework of the Indicative Measurements of the
EU Directive on Ambient Air (2008/50/EC). Air pollution low-cost
sensors should be treated as any other analytical instrument and
they require regular calibration and show long-term changes in
drift and sensitivity.
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Several parameters from low-cost sensors that should be moni-
tored over time including baseline drift (change in intercept) and
changes in sensitivity (e.g. changes in slope). They should be cor-
rected over time with data post-processing. Data quality has to
be maintained by periodical comparison at regular intervals of 6
months of the values obtained with a low-cost sensor to a co-located
reference monitor [Lewis et al. 2018].

5 CONCLUSION

This article illustrates the current situation of atmospheric low-
cost sensors, especially on its performance, calibration and quality
control. Currently, calibrations are divided into laboratory and field
calibration, which is the real-world, posing different meteorological
challenges. Simple regression is still the most common way for
calibration. However, machine learning methods, like ANN, can
be useful in merging sensitivity analysis as to their hidden layers.
Calibration can be evaluated by statistical parameters like R2, RMSE,
and MAE. Calibration should be carried out at a regular interval due
to a possible long-term drift and different meteorological conditions.

The purpose of using low-cost sensors are not for perfect ac-
curacy, but for a wider spatial resolution and an more extensive
measurement network. The improvement of sensors by calibration
would provide more insights from places other than the existing
reference stations.
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