
Efficient Data Analysis Pipelines
Teemu Koivisto

teemu.koivisto@helsinki.fi
Department of Computer Science

University of Helsinki
Helsinki, Finland

ABSTRACT
This report shows themany different parts of data analysis pipelines
and how they act together especially when they are used to model
big data. From the data source, where the data is incubated, it’s
moved through a connecting link such as internet to data collectors
which in turn ensure, that the data is being gathered properly.
From data collection it’s often times persisted on a database or
file storage, depending on the type, size and the amount of the
data. Preprocessing is later used to standardize the data to the
modelling layer, where it might be used as a part of data lake or
data warehouse architecture to gain insights into the data as it
evolves. To further simplify this process, cloud services or other
higher level frameworks might be used to reduce the complexity of
pipeline creation.

KEYWORDS
data pipeline, data engineering, data analysis, big data

1 INTRODUCTION
In any software system the control of the flow of information
throughout the system by a series of different processing elements
is an integral part of it. This specific process of manipulating data
with different processing functions like filtering or sanitizing is
more commonly referred to as a pipeline, analogous to the physi-
cal pipelines. Whereas if the data is used for some specific purpose
such as data analysis, one can simply refer to it as a data analysis
pipeline; a chain of processes to move andmanipulate data designed
to be served to a statistical model [4].

This report portrays a quick overview of data pipelines especially
for data analysis with two example pipelines.

2 COMPONENTS OF A DATA ANALYSIS
PIPELINE

On a technical level some have tried to give semantic definitions for
the parts of the pipeline [5]. At its core, a pipeline can be thought
of as a Directed Acyclic Graph (DAG) composed of different
processing operators. A source produces data whereas a sink
consumes it and for example amerge combines the outputs of two
pipes into one output.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DSNS ’19, Spring 2019, Helsinki, Finland
© 2019 Copyright held by the owner/author(s).

This definition however, lacks the wider perspective how a
pipeline works as a complete software system. To understand it
better, we’ll go through the different parts of a data analysis pipeline
as layers to illustrate the concept.

2.1 Data source layer
The basis of any pipeline are the producers of the data: the data
sources. These could be anything from the users of a web service
to IoT devices to the sensors of Large Hadron Collider. With the
current modern technology this massive data, big data, is being
produced and collected with unprecedented size and quantity [10].

Which brings a lot of new opportunities and also problems, as the
previous ways of managing the data are no longer viable. There also
lies a the question, is there anything useful in the data? With such
massive data, the signal we are measuring might become increas-
ingly difficult to find. And taking into consideration the resources
required to process that amount of data, store it and transport it,
the benefits of data collection must be carefully weighted.

Data itself can be of many different shapes and forms which
are commonly described as structured, semi-structured and un-
structured in big data setting. Each of these types will determine
which type of analysis and storage suits them best, which should
be analyzed when implementing a data analysis pipeline [4].

2.2 Data collection layer
The output of the data layer are then often sent across internet using
TCP/IP to be stored or further processed. Collection could also be
done using radio waves or other signals, which might happen more
and more often with the increasing amount of Internet of Things
(IoT) devices as a part of a big data [10].

A problem with any type of collection is, the assurance that the
data will be collected. With a large website such as Google Search
or Facebook the servers are receiving billions of visits each day 1
2. To handle such traffic, the collection services must also arise to
the demands of massive traffic within a moment’s notice without
crashing the whole system down.

A load balancer, or more often load balancers, serve as a entry
point to many web sites, which proxy the incoming traffic to for ex-
ample a set of application servers. This enables distributing the load
from a single server to many enabling much larger throughput and
fault tolerance beyond a single application server. The scheduling
itself could be done using a Round Robin algorithm [13].

1https://searchengineland.com/google-now-handles-2-999-trillion-searches-per-
year-250247
2 https://www.statista.com/statistics/346167/facebook-global-dau/



DSNS ’19, Spring 2019, Helsinki, Finland Teemu Koivisto

But even after receiving the message successfully, it’s in turn
another service’s job to process the request. While the applica-
tion servers might be scaled up to match the need, for very high-
frequency data a more specialized service might suit better. Rather,
you’d use something like aApache Kafka orRabbitMQ. They are
stream processing softwareswhich manage the many caveats of
ingesting massive amounts of continuous data, streams, and ensure
they are processed in a robust manner.

Kafka for example has many useful features such as its own
distributed commit log, which enables replaying of streams along-
side other useful things like data aggregation. Kafka allows other
services to subscribe to certain topics which notify them only for
certain events in the stream et cetera. A common use-case for
Kafka messages is to off-load them to a HDFS filesystem as a part
of Hadoop cluster for further processing [2].

2.3 Persistence layer
After the data has been collected, it’s commonplace to persist the
data somewhere. This as mentioned can be done using a HDFS
filesystem, but more often with regular web services a relational
database management system (RDBMS) such as PostgreSQL
is used to persist most of the application data.

Relational databases provide as their name indicates, a relational
representation of the data served often from memory allowing the
quick joining and combination of different data. They virtually all
use also SQL query language which gives a lot of flexibility for
querying and manipulating the data. This alongside their strong
guarantees on the data’s atomicity as in ACID make them suitable
for most of data needs of a small-scale web-application, and still
serve as a backbone for many larger scale applications [12].

But however, there are problems with a RDBMS on a large dis-
tributed scale, where their performance deteriorates under heavy
load and thus are not as suitable as other, more scalable solutions. To
address this specific problem big data can cause, NoSQL databases
were invented to allow easier scalability. NoSQL has been described
to scale "horizontally" where growing the database happens by
adding more servers, whereas traditional SQL databases scale "ver-
tically" where single master is often first upgraded to its maximum
[11].

And for NoSQL there are many subcategories such as key-value
store, document-oriented databases, wide column store and graph
databases [14]. Common to them all is their unrelational data struc-
ture and their scalability on a large scale distributed setting [11].

Yet for data such as files or other binary formats a database
might not not necessarily be needed. Static file storage such as
SSD or HDD drives can be assembled in RAID arrays or Net-
work Attached Storage (NAS) for enhanced performance and
fault-tolerance [7, 15]. However, for completely distributed file sys-
tem a Hadoop Distributed File System (HDFS) might be used
which in unison with MapReduce computation can process vasts
quantities of file data with commodity hardware. Also to bybass the
complexities involved with maintaining these system by yourself,
cloud providers such as AWS or GCP are commonly utilized to
further reduce the burden for managing such a sprawling system.
AWS Simple Storage Service (S3) is a popular choice for a highly
scalable and robust Object Storage Service (OSS) [4].

2.4 Preprocessing layer
Once the data has been persisted and before it’s used for modelling,
it often has to be transformed or otherwise manipulated into some
form for the model to use.

With big data it’s common, that the data in hand comes from a
wide variety of sources which each might have to be standardized
to some joint format. Preprocessing could include checks for con-
sistency as in missing data or duplicates. Also outlier detection is
useful to reduce possible noise from the data [4].

This mayhaps tedious work might comprise 80% of the total
work for data analysis which highlights the importance of efficient
preprocessing [8].

2.5 Modeling layer
Once the data has been processed into its desirable form, it’s ready
to supplied for the data analysis model. In the simplest setting a
modelling could be done using a Jupyter notebook importing data
from a file. However, as the data grows and comes to span a wide
variety of different formats, sources and latencies, the problems of
big data analytics come evident.

Traditionally the algorithms used in data mining have assumed
access to the whole dataset, but with high data volumes and stream-
ing is only provided as fractions of the entire dataset. Also the
data streams as unbounded sequences of data points create non-
stationary flows, in which the true distribution of the data evolves
over time [4].

Therefore special type of computing is required, such as the well-
knownMapReduce, which has been an integral part of popularizing
big data. MapReduce offers a way to do extremely parallelizable
computing in a cost-efficient fashion. Other existing solutions for
doing large scale computation could be proprietary Google Cloud
BigQuery or AWS Athena which allow the querying of massive
datasets using SQL language, thus offering a well-known interface
for accessing the data [10].

The often problematic integration between different datasets
can be managed through a data lake (DL) infrastructure. DL is a
single repository for storing vast amounts of heterogeneous data
in their original formats such as relational tables, XML, pictures
or other files. Commonly the storage layer in DL deployments is a
distributed file system such as HDFS in which the data is proccesed
in parallel with eg. MapReduce [4]. A data warehouse (DW) on
the other hand is a single store for keeping and managing the data,
for example AWS Redshift3 data warehouse can be used to load the
contents of multiple databases into one for only the time they are
needed [6].

3 IMPLEMENTATION
As the high overview analysis of the components showed, the actual
complexity of the pipelines is vast and complex area, which requires
a lot of domain knowledge to understand all parts of it.

To showcase how an actual data analysis pipeline works in prac-
tise, I’ll view two example data analysis pipelines with first one
using a very specific system and the latter a more holistic, general
approach.

3https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html



Efficient Data Analysis Pipelines DSNS ’19, Spring 2019, Helsinki, Finland

3.1 Example 1: Twitter pipeline
Kejriwal et al. analyzed Twitter tweets for real-life crisis informatics
using the Las Vegas shootings as example with a scalable and simple
end-to-end pipeline [9]. Its goal was to find a better way to do rapid
acquisition, preprocessing, analysis and visualization of a crisis-
specific dataset in the aftermath of a new crisis.

Their data source consisted of tweets from Twitter API which
the authors wanted to filter and curate for tweets regarding the
attack using a combination of unsupervised text embeddings and
limited-label active learning to construct a crisis-specific training
set.

Large part of the problem in this research was the filtering of
unrelated, "negative", tweets from the "positive" ones. While a user
could by optimistically specifying keywords and hashtags eg. "las
vegas shooting" acquire a high-recall dataset, it would still not be
enough high precision. Using a high precision keyword such as
"las vegas shooting" would then again miss out on a lot of other,
relevant data.

The time restrictiveness of the data is also a problem. Most of
the relevant tweets would happen in a short period during and
after the shooting and decline quickly over time. If however, such a
dataset could be acquired in real-time, it would significantly help
the crisis workers to gain situational awareness into the crisis as
it’s unfolding.

To summarize the suggested pipeline, it is mostly focused on
the various preprocessing tasks such as filtering and classification
of tweets based on keywords. A very important aspect of it is,
that it doesn’t require user to engineer features or label thousands
of tweets. Instead, a series of unsupervised text-embeddings and
active learning is done to acquire a dataset with minimal human
engineering [9].

3.2 Example 2: Genome sequencing pipeline
Whereas the Twitter pipeline was mostly focused on the specifics
of implementing unsupervised and active learning on a fairly small
dataset, genome sequencing instruments can produce several ter-
abytes of raw data in one day. To transport and store this large
data, a lot of engineering must be put into the construction of the
required data pipeline [15].

Three different solutions are proposed, that are either a private
cloud solution, where all the infrastructure will be on-premise. The
data produced by the sequencing instruments is stored on a large
NAS drive, which the nodes in the computing cluster can read as
part of their processing pipelines. These high-performance nodes
will run the heavy computation tasks supplied as DAGs with a
high-throughput networking connections between the devices to
enable low latencies.

For a public cloud solution the instruments and the NAS will
remain on-premise, but the rest of the infrastructure will be moved
to a public cloud such as Alibaba Cloud. There, a fleet of nodes
using container technologies will compute the tasks, utilizing a
OSS to store the results and the sequencing data. Public cloud’s
services are also used to allow access from other parties to run their
own models on the data.

The final solution presented is a hybrid cloud, where bulk of
the computing will be done on-premise using local computing

nodes and additional nodes are provisioned from the public cloud
as needed. By balancing the cost effectiveness of on-premise hard-
ware and the scalability and services of cloud provider, a suitable
compromise is found tominimize the resource costs and operational
overhead in this particular setting [15].

4 AIMING TOWARDS A GENERAL
APPROACH

As the previous examples showed, when the data analysis pipeline
progresses and increases in size, multiple different types of models
and variations on the data are used [15]. This makes using a more
general purpose tool for creating the pipelines more desirable to
lower the managerial overhead involved.

Extract Transform Load (ETL) has been a general method for
describing the workflow of transferring data from one source to
another. They enable defining modular interfaces which can then
be processed together as a chain of processes [6].

ETL however is only a name for the general procedure, and the
actual implementation and composition of ETL jobs has to done
using a suitable ETL software. Because this field of data engineer-
ing is still very new, the tools around it are also fairly recent with
Apache Beam (2016)4, Apache Airflow (2014)5 and Luigi6 (2014) [4].
Apache Beam is a general-purpose tool for implementing the ETL
parts, with support for Spark and Hadoop directly [3].

Apache Airflow and Luigi are more abstract designing tools
of the pipelines, where the programs itself are not included but
are used with operators such as BashOperator, SQLOperator and
PythonOperator to compose the DAGs. This allows using the same
programming language to describe all the operations and keeping
it in the same version control [1, 4].

5 CONCLUSION
In conclusion, the creation of efficient data analysis pipelines is
an arduous task comprising of several complex parts, that can be
difficult to manage. To reduce the complexity one can use fully-
managed or other proprietary cloud services which enable the
analyst to focus their time on the actual datamodelling. The pipeline
itself might be good to describe using a higher level framework
such as Apache Airflow, which make the development of bigger
pipelines easier without sacrificing flexibility. The whole pipeline
and its layers: data source, collection, storage, preprocessing and
modelling, must be thought of as a whole to fully maximize the
efficiency of the pipeline.

REFERENCES
[1] Apache Airflow authors. [n. d.]. Apache Airflow Documentation. http://airflow.

apache.org/ accessed at 5.4.2019.
[2] Apache Kafka authors. [n. d.]. Apache Kafka is a distributed streaming platform.

https://kafka.apache.org/intro accessed at 18.3.2019.
[3] Apache Beamauthors. [n. d.]. Apache Beam: An advanced unified programming

model. https://beam.apache.org/ accessed at 5.4.2019.
[4] Paolo Ceravolo, Antonia Azzini, Marco Angelini, Tiziana Catarci, Philippe Cudré-

Mauroux, Ernesto Damiani, Alexandra Mazak, Maurice Van Keulen, Mustafa
Jarrar, Giuseppe Santucci, Kai-Uwe Sattler, Monica Scannapieco, ManuelWimmer,
Robert Wrembel, and Fadi Zaraket. 2018. Big Data Semantics. Journal on Data
Semantics 7, 2 (01 Jun 2018), 65–85. https://doi.org/10.1007/s13740-018-0086-2

4https://beam.apache.org/
5https://airflow.apache.org/
6https://github.com/spotify/luigi

http://airflow.apache.org/
http://airflow.apache.org/
https://kafka.apache.org/intro
https://beam.apache.org/
https://doi.org/10.1007/s13740-018-0086-2


DSNS ’19, Spring 2019, Helsinki, Finland Teemu Koivisto

[5] Maurizio Drocco, Claudia Misale, Guy Tremblay, and Marco Aldinucci. 2017.
A Formal Semantics for Data Analytics Pipelines. CoRR abs/1705.01629 (2017).
arXiv:1705.01629 http://arxiv.org/abs/1705.01629

[6] Shaker H Ali El-Sappagh, Abdeltawab M Ahmed Hendawi, and Ali Hamed
El Bastawissy. 2011. A proposed model for data warehouse ETL processes.
Journal of King Saud University-Computer and Information Sciences 23, 2 (2011),
91–104.

[7] Bin Fan, Wittawat Tantisiriroj, Lin Xiao, and Garth Gibson. 2009. DiskReduce:
RAID for Data-intensive Scalable Computing. In Proceedings of the 4th Annual
Workshop on Petascale Data Storage (PDSW ’09). ACM, New York, NY, USA, 6–10.
https://doi.org/10.1145/1713072.1713075

[8] Daniel Haas, Sanjay Krishnan, Jiannan Wang, Michael J. Franklin, and Eugene
Wu. 2015. Wisteria: Nurturing Scalable Data Cleaning Infrastructure. Proc. VLDB
Endow. 8, 12 (Aug. 2015), 2004–2007. https://doi.org/10.14778/2824032.2824122

[9] Mayank Kejriwal and Yao Gu. 2018. A Pipeline for Post-Crisis Twitter Data
Acquisition. CoRR abs/1801.05881 (2018). arXiv:1801.05881 http://arxiv.org/abs/
1801.05881

[10] Zaigham Mahmood. 2016. Data Science and Big Data Computing: Frameworks
and Methodologies (1st ed.). Springer Publishing Company, Incorporated.

[11] A. B. M. Moniruzzaman and Syed Akhter Hossain. 2013. NoSQL Database: New
Era of Databases for Big data Analytics - Classification, Characteristics and
Comparison. CoRR abs/1307.0191 (2013). arXiv:1307.0191 http://arxiv.org/abs/
1307.0191

[12] Rabi Prasad Padhy, Manas Ranjan Patra, and Suresh Chandra Satapathy. 2011.
RDBMS to NoSQL: reviewing some next-generation non-relational databaseâĂŹs.
International Journal of Advanced Engineering Science and Technologies 11, 1 (2011),
15–30.

[13] Sreelekshmi S and K. R. Remesh Babu. 2018. Synchronized Multi-Load Balancer
with Fault Tolerance in Cloud. CoRR abs/1811.01319 (2018). arXiv:1811.01319
http://arxiv.org/abs/1811.01319

[14] Roberto V. Zicari, Marten Rosselli, Todor Ivanov, Nikos Korfiatis, Karsten Tolle,
Raik Niemann, and Christoph Reichenbach. 2016. Setting Up a Big Data Project:
Challenges, Opportunities, Technologies and Optimization. 17–47. https://doi.org/
10.1007/978-3-319-30265-2_2

[15] Jitao Yang. 2017. Hybrid Cloud Computing Solution for Streamlined Genome
Data Analysis. In Proceedings of the 9th International Conference on Management
of Digital EcoSystems (MEDES ’17). ACM, New York, NY, USA, 173–180. https:
//doi.org/10.1145/3167020.3167047

http://arxiv.org/abs/1705.01629
http://arxiv.org/abs/1705.01629
https://doi.org/10.1145/1713072.1713075
https://doi.org/10.14778/2824032.2824122
http://arxiv.org/abs/1801.05881
http://arxiv.org/abs/1801.05881
http://arxiv.org/abs/1801.05881
http://arxiv.org/abs/1307.0191
http://arxiv.org/abs/1307.0191
http://arxiv.org/abs/1307.0191
http://arxiv.org/abs/1811.01319
http://arxiv.org/abs/1811.01319
https://doi.org/10.1007/978-3-319-30265-2_2
https://doi.org/10.1007/978-3-319-30265-2_2
https://doi.org/10.1145/3167020.3167047
https://doi.org/10.1145/3167020.3167047

	Abstract
	1 Introduction
	2 Components of a data analysis pipeline
	2.1 Data source layer
	2.2 Data collection layer
	2.3 Persistence layer
	2.4 Preprocessing layer
	2.5 Modeling layer

	3 Implementation
	3.1 Example 1: Twitter pipeline
	3.2 Example 2: Genome sequencing pipeline

	4 Aiming towards a general approach
	5 Conclusion
	References

