Graduated Optimisation to solve the SLISE problem
Source:R/optimisation.R
      graduated_optimisation.RdGraduated Optimisation to solve the SLISE problem
Usage
graduated_optimisation(
  alpha,
  X,
  Y,
  epsilon,
  beta = 0,
  lambda1 = 0,
  lambda2 = 0,
  weight = NULL,
  beta_max = 20/epsilon^2,
  max_approx = 1.15,
  max_iterations = 300,
  beta_min_increase = beta_max * 5e-04,
  debug = FALSE,
  ...
)Arguments
- alpha
 Initial linear model (if NULL then OLS)
- X
 Data matrix
- Y
 Response vector
- epsilon
 Error tolerance
- beta
 Starting sigmoid steepness (default: 0 == convex problem)
- lambda1
 L1 coefficient (default: 0)
- lambda2
 L1 coefficient (default: 0)
- weight
 Weight vector (default: NULL == no weights)
- beta_max
 Stopping sigmoid steepness (default: 20 / epsilon^2)
- max_approx
 Approximation ratio when selecting the next beta (default: 1.15)
- max_iterations
 Maximum number of OWL-QN iterations (default: 300)
- beta_min_increase
 Minimum amount to increase beta (default: beta_max * 0.0005)
- debug
 Should debug statement be printed each iteration (default: FALSE)
- ...
 Additional parameters to OWL-QN