Preprocess the data as necessary before running SLISE
Usage
slise.preprocess(
  X,
  Y,
  epsilon,
  x = NULL,
  y = NULL,
  lambda1 = 0,
  lambda2 = 0,
  weight = NULL,
  intercept = FALSE,
  normalise = FALSE,
  logit = FALSE
)Arguments
- X
 Matrix of independent variables
- Y
 Vector of the target variable
- epsilon
 Error tolerance
- x
 The sample to be explained (or index if y is null)
- y
 The prediction to be explained (default: NULL)
- lambda1
 L1 regularisation coefficient (default: 0)
- lambda2
 L2 regularisation coefficient (default: 0)
- weight
 Optional weight vector (default: NULL)
- intercept
 Should an intercept be added (default: TRUE)
- normalise
 Preprocess X and Y by scaling, note that epsilon is not scaled (default: FALSE)
- logit
 Logit transform Y from probabilities to real values (default: FALSE)