Initialise the graduated optimisation by sampling candidates
Source:R/initialisation.R
      slise_initialisation_candidates2.RdThe procedure starts with creating num_init subsets of size d. For each subset a linear model is fitted and the model that has the smallest loss is selected.
Usage
slise_initialisation_candidates2(
  X,
  Y,
  epsilon,
  weight = NULL,
  beta_max = 20/epsilon^2,
  max_approx = 1.15,
  num_init = 500,
  beta_max_init = 2.5/epsilon^2,
  max_iterations = 300,
  ...
)Arguments
- X
 data matrix
- Y
 response vector
- epsilon
 error tolerance
- weight
 weight vector (default: NULL)
- beta_max
 the maximum sigmoid steepness (default: 20/epsilon^2)
- max_approx
 the target approximation ratio (default: 1.15)
- num_init
 the number of initial subsets to generate (default: 400)
- beta_max_init
 the maximum sigmoid steepness in the initialisation
- max_iterations
 if ncol(X) is huge, then ols is replaced with optimisation (default:300)
- ...
 unused parameters