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1 Introduction

When validating the performance of machine learning (ML) models, most contem-
porary research focuses on the accuracy of the models. This approach, while useful in its
simplicity, makes it impossible to make any fundamental observations of the model out-
side of whether the model performs well on a particular set of validation data. Together
with the rising popularity of highly complex machine learning models, such as neural
networks, we have found ourselves surrounded with accurate and powerful machine
learning models, yet lacking in capabilities to understand their decisions and function-
ality. Focusing on performance, other important considerations such as robustness and
trust in the systems have been neglected due to a lack of suitable means.

The field of Explainable Artificial Intelligence (XAI) has lately gained traction to
meet the demand of understanding the decisions of machine learning models more
deeply. XAI methods provide tools to understand why particular models make certain
decisions and offer insights into what the models have learned from the underlying data.
Additionally, XAI encompasses methods for developing inherently understandable, yet
powerful models. While canonical examples and use cases of XAI have focused on fields
with high-stakes decision making, such as banking or healthcare, we argue that it is
also the natural sciences that can benefit from these methods.

In this paper, we present an overview of XAI and current key approaches. We
introduce examples of XAI methods used in natural sciences and their benefits in the
respective use cases. Additionally, the role of XAI in natural sciences and virtual
laboratories will be discussed.

2 Overview of explainable AI

As the main purpose of XAI is to provide methods and tools to explain artificial intel-
ligence (AI) or ML models and why or how they make certain kinds of predictions or
recommendations, there is a need to understand first what explaining a model means.
The terminology related to XAI varies a lot; however, there are a few terms that appear
frequently. These are interpretability, explainability, and transparency. The definition
of these terms varies a lot depending on the source, and the definitions of these terms
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often mix with each other. However, we still attempt to summarize the terms in the
following.

Interpretability means presenting something in understandable terms [4]. In the
context of AI or ML, interpretability is defined as presenting something in understand-
able terms to humans. To evaluate what is humanly understandable is difficult because
different users experience things differently, and the experience is subjective [7].

Guidotti et al. [6] defined three different dimensions related to interpretability.
These are global versus local, time limitations, and the nature of user experience. Global
interpretability means that the user is enabled to understand the whole logic behind
the model. By understanding this, the user can understand the logic behind all possible
outcomes. In the case of local interpretability, the user understands the reasons behind
the individual outcomes of the model. Time limitation relates to the user’s time limit
to understand the model or outcome. For example, if the user needs to make a decision
quickly based on the model’s prediction, they need to understand the reasons quickly.
On the other hand, if users have time, the explanations can be different. User knowl-
edge or background impacts strongly which kind of explanations they understand; i.e.,
experienced data scientists understand more complex explanations than a common user
may understand.

Explainability relates to the interfaces between a human and the model itself [6].
This explanation should be both understandable to a human and an accurate proxy of
the model. Transparency relates to models that are by nature understandable [1]. A
human can understand a transparent model and its logic without needing additional
explanations.

XAI methods can be divided into two major categories: transparent design and
post-hoc methods [1, 6]. In transparent design, models are either simple enough for
humans to understand or built from scratch to be understandable by design. Post-hoc
methods are methods that are applied to already fitted complex models.

3 Post-hoc approaches: Explaining the black box

Post-hoc approaches are used to explain complex models that are not transparent by
themselves [20]. Post-hoc approaches can be divided into two categories: local and
global. Local methods explain individual predictions, whereas global methods explain
the whole model and its logic. Post-hoc methods, both local and global, can either be
model-specific or model-agnostic. Model-agnostic methods can be used with any model
to extract information about its inner workings.

3.1 Local approaches

Model-agnostic techniques can be divided into three different approaches: simplifica-
tion, feature relevance, and visualisation [1]. In simplification methods, a new simplified
model is trained to explain a trained black box model. The core of this more simplified
model is to reduce the complexity of the model and at the same time retain the perfor-
mance of the model. Most of these methods are based on rule extraction techniques. A
well-known technique of this approach is Local Interpretable Model-Agnostic Explana-
tion (LIME), which we will present later in more detail. Feature relevance methods are
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based on extracting, measuring, ranking, and presenting the importance of each feature
for each prediction. Visual explanation techniques are tools to visually explain black
box models.

LIME is a technique for explaining predictions of classifiers and regression models
[19]. Its purpose is to explain how a complex model makes a prediction for a specific
instance. This is done by training a surrogate model by using subsets of the original
input dataset. This interpretable surrogate model should be a good approximation of
local predictions, but not the global model itself.

Mashiro et al. [20] used LIME in their study to explain an ML model used as
a species distribution model (SDM). Species distribution models are used to predict
species distribution variations in space and time based on the relationship between en-
vironmental variables and species occurrence data. They used LIME to explain why
their SDM model of African elephants made such predictions. The authors used a ran-
dom forecast algorithm for predicting the distribution and LIME was used to evaluate
the reliability of the model. Additionally, they were able to analyse the importance of
variables at the local level.

3.2 Global approaches

Global methods aim to answer the question of how the trained model makes predictions
and explains its functionality. This could also be understood as extracting what the
model has learned about the underlying data. Here the scope is more focused on average
prediction, and how the different elements of the model affect this. In fact, some global
explanation methods can be thought of and constructed as the average of all local
explanations using the same model. Common global explainability methods explore
model features, gradients, or weights to explain how the model makes predictions based
on the data.

Much like local approaches, global methods can also be model-agnostic or model-
specific for certain models or types of models, both with benefits and demerits. Neural
networks, both widely used and inherently hard to understand, serve as a great example
of a type of model where model-specific approaches are useful compared to more general
model-agnostic methods, as they allow for taking advantage of the specific structure of
neural networks. Saliency maps are a common method in image processing to explain
areas of relevance for a prediction, but this approach can also be extended to global
scale and beyond just images. One such example would be a study using Layer-wise
Relevance Propagation (LRP) [15, 21] to extract climate signals for global temperature
maps to better understand what region of the earth is most relevant for predicting
decades [11]. LRP functions by back-propagating the relevance of a prediction back to
the input layer, producing a result of size of the inputs with relevance values for all
input elements. This can be considered as a map of how relevant every input element
was to the final output, in this case, the element being a coordinate region, but this
could also be pixel if applied to an image, or vector element. Applied to a single
prediction, the method is local, but averaged over the data set it produces a global map
of the most relevant regions. Indirectly, this method gives us clues on which regions
might be most affected by climate change or otherwise relevant to major climate signals.
This kind of method allows for examining what regions or variables the model considers
most relevant, allowing for rudimentary validation, such as whether the observed trends
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follow the existing understanding of the phenomenon in question.
In terms of model-agnostic approaches, SHAP [13] is a fairly commonly used method.

This is a game theory-centric approach based on calculating Shapley values for predic-
tions. These model the average marginal contribution of a feature over all possible
coalitions. This produces a measure of how much a feature contributed to a predic-
tion, compared to the average prediction. Shapley values are also additive, meaning
predictions can be combined into a global model. Xue et al. demonstrate the benefits
of SHAP and XAI in their paper about modeling Great Lakes surface temperatures
[23]. SHAP allows them to validate their Long Short-Term memory neural network
model and use this knowledge to combine it with an existing physics-based simulation,
mitigating the downsides in both of the models.

4 A priori approaches: Designing interpretable mod-

els

Transparent models, i.e., models that are interpretable by design, can be compared
to boxes made of glass: the inference process of these models is designed to be clear
and transparent for the user. As opposed to post-hoc approaches in which designing
the model and explaining it are two different tasks, model design and interpretation
are melted into one single step in transparent model design. In other words, the in-
terpretations are intrinsic to the transparent model; the model is a priori interpretable
[18].

Different approaches toward transparent model design have been presented in the
literature, including data-agnostic approaches based on model simplification or aug-
mentation [6], and domain knowledge-driven model design [18].

4.1 Data-agnostic transparent design

Structurally simple models, e.g., sets of rules and decision trees, are models that humans
can understand intuitively [6]. However, to obtain models that are truly transparent
by design, it is important to limit the models’ complexity; even a decision tree can
be inconceivable if it has thousands of branches. For example, Lakkaraju et al. [12]
proposed a mechanism for creating interpretable sets of if-then rules by simplifying
rules obtained through association rule mining. The mechanism optimizes the rules
to be as concise as possible; further objectives include minimizing the overlap between
rules and maximizing their coverage and thus relevancy. Interpretable sets of rules are
a traditional approach to explainable decision models with applications in, e.g., medical
diagnosis [16]. More recently, interpretable rules were used, for example, to gain insights
about the interrelations between the human microbiome and the development of diseases
[2].

For some applications, inherently transparent types of models are not suitable. In
these cases, another option for increasing the model’s interpretability is augmentation,
i.e., enhancing the model with additional information. A prime example for this strat-
egy is prototype-based reasoning, which is a way to explain the output of classification
and clustering methods. Each cluster or class is augmented with a prototype, i.e., the
element of the cluster or class that is most typical for the whole group. An example
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for prototype-based reasoning is the Bayesian case model presented by Kim et al. [10],
which learns a representative prototype for each cluster of a Gaussian mixture model.
In addition to the protoype, each cluster is annotated with a subspace containing the
features that are most important for sorting an element into this particular cluster.
Prototype-based reasoning produces powerful explanations because it resembles an es-
sential human reasoning strategy: reasoning by example. For example, Carrizosa et al.
[3] showed how prototypes can increase the understanding of cities clustered according
to their climate. It should be noted that depending on the definition used, prototype-
based reasoning can be classified as a post-hoc explanation method; in this paper, we
applied the categorization by Guidotti et al. [6].

4.2 Domain knowledge-driven transparent design

Incorporating domain knowledge enables the transparent design of more complex mod-
els, particularly neural networks. There is no one-fits-all approach for this; instead,
each model has to be conceptualized individually for its concrete use case. However,
Quinn et al. [18] outlined a number of central concepts that can guide the design of
transparent models. One important concept is feature engineering, as any model can
hardly be interpretable without interpretable, meaningful features created during the
pre-processing phase. Furthermore, limiting model complexity can help to increase the
model’s interpretability. In the case of a neural network, for example, complexity can
be reduced by restricted the range of values that the network is allowed to learn. Al-
ternatively, constraints can be enforced on the network’s connectivity, e.g., by pruning
less relevant connections after training the model.

A third strategy for achieving interpretability is modularization, i.e., partitioning
the model into small, meaningful parts. Each module corresponds to a certain physical
entity, phenomenon, or system, or complies with human reasoning in another way. To
maximize interpretability, the modules should be organized in a clearly understandable
structure, e.g., sequentially or in hierarchical order.

Building domain knowledge-based transparent neural networks is a fairly novel con-
cept; in the field of biology, Ma et al. [14] were one of the first to propose a biologically
informed neural network, modeling the relationship between the growth rate of yeast
and its genotype [17]. An even more recent example of a transparent neural network is
P-NET, a deep learning model for predicting the cancer state of prostate cells [5]. In
the prediction and early discovery of cancer, explainability is not only a critical factor
for patient care but it can also support the investigation of the underlying biological
processes. P-NET led to the identification of cancer-predicting genes that were not
previously associated with the progression of cancer. This was possible due to the
molecularly interpretable architecture of the model. In P-NET, each node of the lowest
network layer correspond to a gene; nodes in higher layers correspond to increasingly
complex, manually curated biological pathways and systems. When a patient’s profile
is given as input to the model, the nodes that are activated tell the researchers precisely
which genes and pathways influenced the model’s decision. This biologically-informed,
constrained architecture does not have an adverse effect on accuracy, on the contrary:
P-NET outperformed a fully-connected deep neural network.
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5 Discussion and conclusion

XAI can be a good additional tool for virtual laboratories and the natural sciences,
building trust in the models and providing the capabilities to validate the models. XAI
could help bridge the gaps between the different user groups of virtual laboratories,
from data scientists and ML experts to domain experts and researchers, providing
appropriate tools for all user groups to understand more about the process.

XAI provides robust methods for validating existing ML models. Accuracy as a
general metric is useful but limited in its scope and unable to answer questions outside
of whether the models perform acceptably on the know data. XAI methods, on the
other hand, allow for more general judgments of the model. Examining the features and
their importance, it is possible to gauge what the model considers the most important
information. Contrasting this information with pre-existing knowledge of the subject
matter allows users to make educated guesses about whether the model has learned
something useful, and more critically, if it has learned something undesirable.

When the model performs as expected, XAI is able to prove its correctness and thus
builds trust in the system. The scientific method is traditionally concerned with trans-
parency and trustworthiness; a theory or method should be proven before acceptance.
It could be argued that this principle should also be applied to the use of ML models
in natural sciences. The functionality of the model and its trustworthiness should be
proven more rigorously than in current common practice, for which XAI could provide
methods.

The potential of XAI for generating new scientific insights should not be underesti-
mated either, even though this is not the principal purpose of XAI. Integrating XAI into
virtual laboratories could open opportunities for exploratory science, giving researchers
the possibility to examine model decisions thoroughly and discover unexpected pat-
terns. On their own, XAI techniques cannot prove physical phenomena, but they can
support researchers in uncovering aspects worth studying more in-depth.

XAI is a comparably young field, as the concept gained traction only in the last
few years. Although some methods for explaining machine learning models have been
around much longer, the awareness of the need for integrating explanation methods
into the workflow increased only recently [8]. As a consequence, general-purpose XAI
tools are not yet widely established; these, however, are needed to facilitate the smooth
integration of XAI in virtual laboratories.

Explanations generated with XAI methods are not immune to errors, uncertain-
ties, and misinterpretations. To avoid the latter, it is crucial to find effective ways
of communicating explanations to the end users, i.e., explanation interfaces (e.g., 22).
Considering the users of a full virtual laboratory, who may have significantly varying
professional backgrounds, designing these interfaces will be a challenge on its own. A
part of this problem is also that it would technically be necessary to communicate and
handle explanation uncertainties. Quantifying the uncertainty of explanations is not a
well-researched topic, which further contributes to this challenge.

Comparing the different types of XAI methods, we could argue that solutions that
are transparent by design should always be preferred in a virtual laboratory, as the risk
of misinterpretations is generally lower. However, as transparent model design is much
less generic compared to post-hoc methods, it requires more resources. Additionally,
it is not always possible or feasible, and still a very new concept overall. For example,
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Jiménez-Luna et al. [9] found in 2020 that no transparent solutions have been proposed
for the fields of chemistry and drug design yet. At the same time, they recognize how
transparent models could help solve many types of problems in drug discovery, stating
even that interpretable models could provide the means for replacing animal testing by
extrapolating from in vitro to in vivo experiments.

To conclude, it is clear that the potential of incorporating XAI into the scientific
process is enormous. Ideally, it should become a fixed part of every research project
using ML models, and given the rapid current progress, there is a chance that it will
establish itself rather sooner than later. In the virtual laboratories of the future, XAI
can be expected to fill different roles, including but not limited to guiding model design,
enhancing model validation, providing explanations of model decisions, and serving as
a tool for exploratory science.
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