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Introduction
Today, scientists are faced with monumental challenges such as modelling the impacts of
worsening climate change and increasingly frequent extreme weather events and finding new
ways to grow food and produce food sustainably. These tasks have long-surpassed the
capabilities of individual research groups working in their own siloed physical laboratories.

Scientists are increasingly adopting Virtual Laboratories (VLs) to virtually replicate laboratories
and experiments in their entirety, from the underlying processes to equipment and instruments
and the design and steering of the experiment [29, 39]. Virtual Laboratories hold the promise of
making research more open, efficient, collaborative, and accessible by pooling resources and
combining the strengths of physical experiments, virtual simulations, and their interactions. In
particular, VLs let several Physical Entities (PEs) and Digital Twins (DTs) interact and utilise AI
and visualisation to accelerate the scientific process [29]. So how are VLs and their components
being built to fulfil these goals?

This review tries to answer the question:

What is the status of Virtual Laboratories, and what challenges have to be addressed to reap
their benefits for science and society?

Figure 1: Overview of the architecture, building blocks, and themes of Virtual Laboratories.

In particular, this review first gives an overview of VLs and their underlying components, as
sketched out in Figure 1, discusses the infrastructure and process requirements that VLs
introduce and presents examples of how researchers are working towards building
fully-functional VLs in practice. It also delves into the practical challenges that need to be
addressed while designing VLs and discusses how scientific processes are being adapted and
standardised for future scientists working with VLs. Throughout, it also explores the key
challenges and open questions for VLs in future research. First, we start by introducing the main
components of Virtual laboratories (VLs), Digital Twins (DTs).

1



What are Digital Twins?
A Digital Twin (DT) is a faithful computational representation of a real-world entity or process. A
DT can be characterised by its three primary components: the physical entity or process, its
virtual representation and the live coupling between them to exchange information [42, 46].
While many working DTs and hundreds of scientific papers on the topic exist, formal standards
have yet to be agreed upon. Several recent literature review papers have looked into how to
define, create and standardise DTs, e.g.   Aheleroff et al. (2021) [4], Jones et al. (2020) [28],
Semeraro et al. (2021) [40], VanDerHorn & Mahadevan (2021) [46], and van der Valk et al.
(2020) [47]. For instance, in van der Valk et al. (2020), the authors created a multi-dimensional
taxonomy for DTs based on an examination of 233 papers [47], identifying the following vital
characteristics of a DT that the majority of (but not all) definitions agreed upon: containing both
Human-Machine and Machine-to-Machine interfaces, having a bi-directional data link that
automatically exchanges data between multiple sources, processing of raw and pre-processed
data, and being bound to a Physical Entity (PE) of which an accurate model is provided.

What separates a Digital Twin from a simulation? The terms Digital Model (DM), Digital Shadow
(DS) and Digital Twin (DT) are often misinterpreted as referring to the same concept. However,
the difference is how information is transferred between the physical and virtual worlds [4]. In
particular, a DM does not have any real-time links, a DS only has a real-time uni-directional link
from the physical to the digital domain, but a Digital Twin must provide bi-directional real-time
data flow that links the digital to the physical domain [4], e.g. by continuously calibrating a
simulation with live measurements, whose output is then used to control the experiment.

What are Virtual Laboratories?
Virtual Laboratories (VLs) are digital, interactive
representations of everything that otherwise
occurs in a physical laboratory setting. Hence,
they provide a readily usable framework to design
and perform varying experiments in, just like a
physical real-world laboratory does. VLs replicate
a laboratory and its experiments in virtual space in
their entirety by modelling the physical
environments (see Appendix B), processes and
instruments. Figures 1+2 show that VLs consist of
many interconnected DTs, data, UI, and ML/AI.

Figure 2: Elements of a Virtual Laboratory. From:
Figure 2, Klami et al. (2022, preprint) [29].

Licensed under CC BY-NC-SA 4.0.

An essential distinguishing element between a VL and a Digital Twin is that fully functional VLs
extend beyond a single domain-specific Digital Twin and instead connect several Digital Twins
on a digital ecosystem platform [34]. VLs are also distinct from simulations as their Digital Twins
automatically communicate bi-directionally with their physical counterparts.

Via the user interface, which can be a GUI or user-built application that utilises APIs for the
Virtual Laboratory framework, the VL’s user should be able to interact with information and
visualisations, models and simulations, and conduct experiments with different scenarios and
forecasts. Data sources for VLs can include traditional databases or live measurements, e.g.,
observations, GIS, video streams, and measurement devices such as IoT. Preferably, the users
should be able to integrate their own data into the VL platform [34]. In addition, using AI-based
methods is seen as a crucial element in VLs [29]. A Virtual Laboratory can also optionally
integrate a remote, hardware-based laboratory and have remote control and access to actuators
in the physical facility [4], going even beyond the bi-directional data exchange requirement.
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Some literature, such as Budai et al. (2018) [13], defines a virtual laboratory much more
generously as just a software-simulated laboratory. In this report, we instead use the strict
definition inspired by Klami et al. (2022) [29] and Aheleroff et al. (2021) [4] that includes the
bidirectional data exchange, coupling of several Digital Twins, and usability as a platform to
design and conduct novel experiments. We do adopt this stricter definition to follow the evolution
of VLs from a historically literal definition (please refer to Appendix A for a brief history of the
development of the first virtual laboratories), over a vaguely defined buzzword, to a more clearly
defined architecture that has strict criteria which inform where future work is still required to fully
realise the potential of VLs. To avoid confusion, we refer to VLs following our definition as
capital-case Virtual Laboratories, whilst using lower-case virtual laboratories elsewhere.

Case Studies on the path to fully-functional Virtual Laboratories
What could a fully-functional Virtual Laboratory look like? What architectures could they use? To
answer these questions, we first give a higher-level overview of virtual laboratory designs by
highlighting three examples on different scales: CROP, WetLands, and Destination Earth.

CROP: The Crop Research Observation Platform
The world’s population is growing and increasingly concentrated in urban areas, which has
increased the need for more efficient and sustainable food production that is closer to
consumers. The “Growing Underground” project in London demonstrates how underground
hydroponic farms could help provide more urban farming [25]. In an old Underground tunnel
beneath Clapham, many hydroponic arrays grow plants like herbs and salad greens [20, 48].

Figure 3: Screenshot of the CROP Monitoring Platform Webapp. From: Alan Turing Institute.
(2020) [5]. Screenshot by Tomas Lazauskas. Licensed under the MIT License. Available from:
https://github.com/alan-turing-institute/CROP/blob/bcfaccc/media/webapp.png
[Accessed: 4th December 2022]

CROP is a Digital Twin built to optimise the operation of this underground farm, which is still
being actively developed for ongoing research [5]. All around the farm, sensors collect data in
near-real-time on environmental variables such as temperature, humidity, and air speed, as well
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as the farm’s energy consumption and its live crop growth and yield. These heterogeneous data
points are then assimilated in ARIMA, a statistical moving average model, and the Greenhouse
Energy Simulation, a physics-based forecasting model [5]. These models, fed with live data, are
used to explore what-if scenarios to optimise the placement of crops, the growing conditions and
the energy efficiency of the farm by comparing the farm’s past and predicted performance.

CROP is fundamentally built as a cloud-based Digital Twin that combines various streams of
heterogeneous data sources. It uses serverless Azure functions to connect to the API endpoints
of external systems, including Stark ID (energy analytics) and OpenWeather, and collect data
from these services into a Postgres database, where the results of scenario forecasts executed
on Azure functions are stored as well. All this information is then presented to the end user, the
operators of the underground farm, in an HTML5-based web application that visualises the
entire farm and its sensors using the Unity 3D game engine. An example screenshot of this web
application is shown in Figure 3. All components of CROP are containerised with Docker for
easier deployment [5].

The CROP Digital Twin highlights how coupling a virtual model representation to its physical
system can integrate heterogeneous data streams in real-time and provide actionable feedback
to operate the physical system more efficiently.

WetLands
Wetlands are ecosystems that provide many ecosystem services. For instance, they are
important carbon sinks, filter stormwater, and can act as flooding control. In New Zealand,
several wetlands have been manually constructed for these reasons. To benefit from these
wetlands, they require continuous inspection and maintenance, particularly after heavy rainfall.

WetLands is an industry project that aims to survey these constructed wetlands, e.g. to
schedule their maintenance [2, 3, 4]. As real-life wetlands are complex interconnected systems,
modelling them using a single monolithic Digital Twin would be insufficient. Instead, the
WetLands project deals with this complexity by using a network of communicating Digital Twins,
which are provided in a DT-as-a-Service architecture. Each Digital Twin combines weather
information from UBIMET, several data sources from across its wetland, such as the water level
and various sediment measurements, and is in control of the local pumps. Additionally, all Digital
Twins are connected to share water exchange information.

Similarly to CROP, the WetLands Digital Twins fall into the category of predictive Digital Twins,
as they are characterised by the bi-directional data exchange between physical sensors, the
Digital Twin, and physical actuators such as pumps [4]. This communication is facilitated
through the commercial ThingWorx platform, which also provides analytics and machine
learning for the Digital Twins. The collected and analysed information about the wetlands is
finally presented to different end users in different media. While the operators primarily interact
with a typical dashboard, maintenance staff and citizen scientists can access an augmented
reality visualisation1 to monitor their local wetlands with real-time information [2, 3, 4].

The WetLands project highlights how a divide-and-conquer architecture can model both local
and system complexity by replicating the structure of the natural world in the digital domain.

Destination Earth
Destination Earth (DestinE) is an ambitious collaboration that aims to create a high-precision,
interactive, digital and dynamic simulation model of planet Earth and its systems [17, 18]. This
future platform, whose development is funded by the European Union, is aimed at supporting
EU evidence-based policy-making by providing decision-makers with even more detailed

1 Unfortunately, no exemplary diagrams or pictures, e.g. of the augmented reality visualisation of the Digital Twins,
can be shared in this report. Aheleroff et al. [2, 3, 4] have published their work on WetLands under either closed or
no-derivatives open-access licences, thereby going against the spirit of collaborative science in VLs.
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predictions on the impact of climate change, the forecasting of natural hazards, and the most
effective measures to protect biodiversity in ecosystems.

DestinE is currently still in the preparatory phase. The first core services of the envisioned
platform should come around 2024, alongside a showcase of the first two Digital Twins built on
them, which will focus on extreme weather events and climate change adaptation. However, the
project aims to provide a full replica of the earth’s systems by 2030. Overall, the largest future
impact of the Destination Earth collaboration might be its drive towards standardising software,
model, and data formats, which would greatly simplify future Virtual Laboratory collaborations.

Figure 4: DestinE digital ecosystem & virtual cloud architecture overview. From: Figure 10,
Nativi, Mazzetti & Craglia. (2021) [34]. Licensed under CC BY 4.0.

Comparison of the three Case Studies
Since this report aims to give an overview of Virtual Laboratories in practice, an important
question is: Are the presented case studies examples of fully-functional Virtual Laboratories?
The following table summarises the three examples, CROP, WetLands, and Destination Earth,
and the virtual laboratory components that they consist of:

Components CROP [25, 29] WetLands [2, 3, 4] DestinE [17,18,34]

Type Digital Twin Digital Twin as a Service VL Digital Ecosystem

Scope Farm-specific Domain-specific Cross-domain + European

Digital Twin
Integration

Isolated Digital
Twin

Network of identical
Digital Twins

Integration of various
Digital Twins

Data
Connection

Bi-directional Bi-directional DT-specific, mostly
uni-directional

HPC and cloud Azure ThingWorx EuroHPC

ML/AI classical models models and analytics DT-specific emulators

User Interface Web app, 3D Dashboard, 3D AR Client-application specific

Status Ongoing Completed In planning, by 2024-2030
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The CROP and WetLands projects are clearly lacking some important characteristics towards
being Virtual Laboratories, as they are isolated and domain-specific Digital Twins. In particular,
they lack coupling with other Digital Twins and are not platforms that support conducting new
experiments. However, both of these examples showcase some important steps towards a full
VL and can be taken as inspiration in their areas of focus. CROP showcases how predictive
experiments conducted using the coupled Digital Twins fed from almost real-time data can be
used to automatically steer an underground farm to optimise its food growth and yield.
WetLands highlights how several instances of a Digital Twin model can be coupled to naturally
represent the interconnected complexity of the real-world constructed wetlands in New Zealand.

Destination Earth, on the other hand, will one day become a Virtual Laboratory and a digital
ecosystem platform to build new Digital Twins and smaller-scope virtual laboratories. While it is
still only a concept at the time of writing, the initial Digital Twins and core platform services in
2024 should already showcase the path towards fully functional Virtual Laboratories. By 2030,
Destination Earth would be (one of) the first full Virtual Laboratories, as defined by [29] and [34].
Furthermore, this project and its large scope and funding will be crucial in shaping the
standardisation of Virtual Laboratory design to better facilitate the collaboration of different
research groups across different disciplines in the future.

Virtual Laboratory Design Space — Practical Challenges
Following on from reviewing three example projects on the path towards Virtual Laboratories,
this next chapter delves into the design challenges for Virtual Laboratories in more detail. It
gives an overview of the design space, prior work, and the need for future research.

Today, many research groups still build small isolated DTs restricted to a specific research
domain [29, 39, 42] and use non-standard technology stacks. Moreover, Niederer et al. (2021)
state that no cross-domain standards exist to validate DTs and assess their credibility [35]. Due
to this, numerical accuracy, stability, uncertainty quantification and propagation tests vary.
Hence, a key challenge for VLs lies in standardising formats, protocols and procedures for
sharing and evaluating models, software, and data such that they can be easily shared and
combined across research groups and disciplines [31, 34, 39].

If the infrastructure of VLs is instead designed from the ground up to support collaborative
science, they can enable “acceleration, reproducibility, and scalability of research” [29]. VLs
might then allow conducting more complex experiments that would otherwise be too risky or
costly with physical equipment. Hence, VL components must be specifically built to keep
humans-in-the-loop as active collaborators [29], work on decentralised infrastructure with lots of
inter-communication [31, 43, and provide full reproducibility, repeatability and uncertainty
quantification [39]. However, while research on individual DTs is well-established, exploring
different software infrastructures [43], scientific protocols, and the evolving roles of human
scientists in future Virtual Laboratories is still relatively new [29].

Reproducibility, Repeatability, and Scalability
Quintessentially, VLs are all about reproducibility, repeatability, and scalability. Reproducibility
and repeatability are fundamental requirements to ensure that researchers can validate, repeat
and share the results of a given experiment [14]. Reproducibility is preliminarily achieved by
shared data, tools and models, controlled environments, and setups. A controlled technical
environment consists of fully specified software and data versions and metadata that are
archived alongside any results using version control.

Additionally, shared experiment protocols are also needed. Protocols define data requirements
(such as metadata formats and data versions), format (for example, units of measurement,
identification of no data values, significant observation period), experiment execution (e.g.
selection of a well-documented model code) and outcome analysis (e.g. criteria for judging
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model performances). While protocol flexibility allows scientists to bring in their personal expert
knowledge, not documenting every deviation from the protocol damages reproducibility [14].

Finally, scalability is needed in environments where multiple concurrent users perform research.
For instance, when several scientists need to access the same Virtual Laboratory experiments
and run different (varying) instances, scalability can be achieved via distributed infrastructures,
such as cloud environments with scalable computing and storage, and professional architecture
design and orchestration [34].

Interoperable software, models and data
Standard tools and best practice frameworks for optimisation, finite-element methods and
Machine Learning exist. Standardisation and interoperability are also particularly needed in
scientific research to make collaboration across research groups and disciplines easier, a core
aim of Virtual Laboratories. However, scientific software is still often domain-specific, e.g. in DTs
[35], and uses custom software stacks and data formats [42]. Moreover, interoperability, security,
and hardware performance are often afterthoughts.

Intersect-SDK [43] tries to answer these challenges with a microservices-based, hierarchical
system-of-systems infrastructure for Virtual Laboratories. It aims to make containerised
components with plugins re-usable and use adapters between specific instruments and
standardised APIs and adapters abstracting over specific compute hardware, e.g. GPUs and
HPC. Furthermore, components are decoupled and communicate through publish-subscribe
messaging. Intersect-SDK also introduces a scientific orchestrator component to guide
experiments with domain- and experiment-specific configurations. The project also utilised
industry-standard agile principles (DevSecOps) for software design.

In addition to interoperable software, collaborative science also needs standards to share and
compare machine learning models and data [42]. One proposal towards sharing models is
ONNX (Open Neural Network Exchange), an open, interoperable format to share models
between different frameworks, compilers and hardware. For data sharing, the ‘FAIR Guiding
Principles for scientific data management and stewardship’ were published in 2016 [50]. The
FAIR data principles emphasise that data should be findable (has rich metadata with a unique
and persistent identifier that is searchably indexed), accessible (by a standard and freely
implementable protocol that supports authentication), interoperable (uses formal knowledge
representation vocabulary and links to other data by their IDs) and re-usable (has a clear and
accessible data use licence and records data provenance) [44]. One ambitious example of
sharing data is INSPIRE, a European directive for creating a spatial data infrastructure (SDI)
and sharing spatial information across the EU to support science and inform policy-making [21,
33]. The INSPIRE directive was passed in 2007 and has since been implemented [21].

For Virtual Laboratories to fulfil their vision of bringing scientists together in a virtual space that
fosters accessible and open collaboration, future work on standardising existing scientific
software and making them interoperable in VLs will be crucial. However, demand will likely
continue to drive more domain-specific innovation and development. Hence, large projects such
as Destination Earth, the VL digital ecosystem to model all Earth systems, or ITER, the nuclear
fusion reactor project being built by China, the EU, India, Japan, Russia, South Korea, and the
US, provide opportunities and funding to surmount these inter-disciplinary challenges.

Digital Twin communication and calibration
A crucial aspect of Virtual Laboratories that separates them from simulations is the bidirectional
communication between Digital Twins and their physical representations. This grounding in and
calibration with real-world data is especially critical as more research is conducted virtually.

Communication between a Digital Twin (DT) and its Physical Entity (PE) is called intra-twin
communication [31]. Raw data is transferred from the PE to the DT, and processed information
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flows back from the DT to the PE. These data channels must be private and protected and
require synchronisation, especially if the DT gives control feedback. The DT can be in the cloud,
on the edge, or on the PE itself. Inter-twin communication (between two or more DTs) is more
flexible but also sensitive to the availability of an Internet connection between all DTs [16]. One
solution for more stable inter-twin communication is an IoT data aggregation and analytics cloud
platform called ThingsSpeak. It offers to be an intermediary for inter-twin communication and
uses MQTT, a lightweight publish-subscribe IoT protocol.

DTs also need to be calibrated to maintain their model’s accuracy over time by integrating new
information. Calibration can be accomplished with live data in two phases. In the offline phase, a
collection of simulated and real-world data pairs are gathered to a data store to find the
differences between both data sets. These error data pairs are then used in offline training of
many specialised calibration neural networks to reduce the error between simulations and the
real world. In the online phase, predictions are constructed from both the simulation and
calibration networks, which are continuously retrained in the background with new data [41].

Another approach for DT calibration is continuous Bayesian calibration (BC), which incorporates
prior information about the problem domain. It is an incremental, approximate method to sample
the calibration posterior. Posterior samples are refiltered once new observations become
available. For instance, Ward et al. (2021) calibrated the CROP DT with continuous Bayesian
calibration and achieved promising results compared to a static model [49].

MLOps — Machine Learning Operations
VLs combine DTs using vast data and various Machine Learning and Artificial Intelligence
(ML/AI) methods, requiring standardised interfaces and workflows. VLs will also increasingly
complement or replace physical experiments, necessitating reproducibility and repeatability. In
addition, VLs exceed the scale of single research groups, which further requires easy scalability.

Machine Learning Operations (MLOps) is a collection of techniques, tools, and processes aimed
at industrialising ML/AI. The framework’s main aim is to deploy and maintain ML models in
production reliably and efficiently [30]. Systematic ML development, delivery, and monitoring can
support thousands of models. The primary benefits of MLOps are efficiency, scalability, and risk
reduction [30, 38]. Figure C.1 presents the architecture and phases of the MLOps pipeline.

MLOps will be essential to building Virtual Laboratories to achieve their required reproducibility,
repeatability and scalability. There is also an opportunity for further combining the two in a
ScienceOps field with open-access, transparent, federated, collaborative and fine-grained
attribution. However, the fact that hardly any literature on MLOps specifically for Virtual
Laboratories exists highlights that there is a danger of haphazardly designing VLs instead of
employing existing software design, deployment, and maintenance expertise.

Big Data Visualisation
Visualisation is a crucial component of Virtual Laboratories, allowing researchers to explore and
communicate data more intuitively. With the increasing amount, dimensionality and complexity
of data, the use of large screens and VR has increased. These devices can support three
different modes of visualisation: (1) the immersive exploration, typically by a single person, (2)
the presentation of results to a smaller group, and (3) the interactive investigation of what-if
questions with a larger team [45]. Since such visualisations require more and more computing
power and faster access to larger data, there is an increasing need for the visualisation to be
computed on HPC as well. By computing it as close to the original data source, costly data
movement is avoided, and existing infrastructure can be used. Thus, more complex visualisation
becomes more accessible to any research group with a good internet connection to an HPC
cluster. Such visualisation can be used to visualise results after the fact and while a virtual
experiment is running. The following sections on Humans in the Loop discuss this idea further.
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Humans in the Loop
Today, the increasing amount of data produced in physical and Virtual Laboratories that need to
be analysed is far outpacing human processing speeds and our emotion-dependent
performance. However, human researchers cannot always be replaced by Machine Learning.
While ML/AI has improved remarkably, it still does not match the complex reasoning capabilities
of humans. Thus, it is beneficial for scientists to collaborate with AI to harness both a computer’s
speed and human reasoning, i.e. combining the different skill sets and levels [11, 22].

Human-in-the-loop is a concept that encompasses any activity that requires continuous human
input. Flight simulators are a great example of this principle, where a computer performs a
complex simulation that is directed by the human pilot’s input. Keeping scientists in the loop in
Virtual Laboratories brings a multitude of benefits, such as more control over HPC and AI. It also
makes decision-making more attributable as both humans and machines are involved.

HPC with Humans in the Loop
The quantity and complexity of big data mean that data analysis today exceeds the processing
capacities of a single work machine over a few seconds and thus has to be asynchronous.
However, popular tools for data science, such as Jupyter notebooks, still rely on a synchronous
processing interface, where code is written for a single processor, not an HPC cluster.

Kale is a tool that was developed to overcome this issue and enable human-in-the-loop
interactivity with HPC workflows using the familiar and intuitive Jupyter interface [15]. It provides
an HPC job configuration, submission, and monitoring interface that integrates directly into the
notebook. Just like single-machine processes can be configured with code and monitored from
the notebook, long-running tasks such as machine learning can now be launched from code and
monitored in the notebook itself without requiring deep knowledge of the underlying HPC
scheduling system. Kale also allows users to pause an asynchronous job at any point, modify its
parameters, and then resume it. Lengthy processes such as hyperparameter optimisation can
thus be controlled interactively, redirected to a more interesting direction, and stopped early to
save processing cycles and energy. Overall, this ensures scientists can make better use of their
Virtual Laboratory’s resources and obtain a deeper understanding of its processes.

AI with Humans in the Loop
Keeping scientists in the loop not only allows them to take greater control of HPC resources
used for e.g. training machine learning models, it also improves the trained models themselves,
e.g. by utilising interactive machine learning. IML is an iterative training process where (1) the
model is partially trained, (2) the model visually presents partial results to the user, (3) the user
provides feedback based on their background knowledge and understanding of the task, and (4)
the process repeats with the training the model after integrating the user’s feedback [26].

What are the benefits of this interactive process? First, as a human scientist is involved
throughout the model training, the model itself and its performance are more transparent.
Furthermore, human scientists have existing background knowledge and still perform better at
detecting outliers and overfitting. Thus, they can guide the model to become more robust and
generalisable. Finally, including a human provides an extra layer of safety for making critical
decisions, e.g. when human or environmental safety is involved.

Combining the skills of humans and ML/AI has many different applications. For instance,
humans can help ML by guiding the generation of informative features, labelling new examples
that the model has deemed critical for its learning process, and tweaking the model parameters
to minimise its error residuals. Additionally, ML can find interesting patterns to show to the user
in Exploratory Data Analysis or collaborate in identifying a useful projection in interactive
dimensionality reduction by tweaking individual point projections or adding constraints. Overall,
these examples highlight the manifold benefits of collaborating with AI in a Virtual Laboratory.
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Future Vision and Conclusion
In this report, we have defined Virtual Laboratories as platforms for interconnected Digital Twins,
which provide researchers with the tools to perform experiments virtually, couple Digital Twins to
real-world experiments to more efficiently control their trajectory, and prototype new experiments
without the constraints of having to build them physically first. Thus, Virtual Laboratories open
up possibilities for designing much riskier experiments. We also highlighted three examples
showcasing the path leading to the first fully functional VL. Next, we presented an overview of
the design space of VLs and how their different design challenges have been approached thus
far. In particular, standardising how software, data and models can be exchanged and how
Digital Twins should communicate stand out as significant challenges and open questions in the
field, for which MLOps offers some existing solutions. These challenges must be overcome to
ensure that Virtual Laboratories can reach across research groups and disciplines to provide a
more accessible and collaborative platform that is built for open, reproducible, and repeatable
science, helping us produce food, model climate change, and protect our ecosystems.

How will Virtual Laboratories change the field of science, the protocols in use, and the roles of
scientists themselves? This is perhaps the most fundamental open question on the path to VLs.
We now want to present our own vision for the future role of scientists in Virtual Laboratories.

Science can gain from the collaboration between ML/AI and humans-in-the-loop. In Virtual
Laboratories, which aim to make science more accessible, repeatable, reproducible, and
scalable, this collaboration will be especially important. However, it will also require a shift in the
role of scientists. ML/AI is increasingly good at performing initial data reviews, can discover
relationships and postulate plausible theories that might explain enormous data sets. However,
deriving new insights, curating and contextualising them within existing research, and explaining
the new findings to other researchers and to the broader public still require human scientists
[11]. Hence, ML/AI will increasingly fulfil the role of a hardworking research assistant that is
especially valuable for repetitive tasks that need more homogeneous performance throughout.
Crucially, this will require ML/AI models to explain their conclusions better: both how they arrived
at an answer (eXplainable AI) and how certain they are (Uncertainty Quantification).

Virtual Laboratories will help standardise science. Through their worldwide accessibility, greater
flexibility, and lower resource consumption VLs could revolutionise the scope of how research
can be done: researchers and citizen scientists from all around the world could collaborate on
designing and prototyping daring new experiments on shared VL infrastructure without the
constraints of physical location or resource investment. In other words, if properly designed and
built, Virtual Laboratories will offer exciting new possibilities for Virtual Scientists and our planet.
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Appendix A — A Brief History of Virtual Laboratories
The terms virtual laboratory and remote laboratory started to arise in scientific papers in the mid
to late 1990s alongside the rise of the Internet. However, these laboratories did not fulfil our
definition of a Virtual Laboratory as a platform linking several Digital Twins. Instead, they were
focused on specific aspects, such finding solutions to remotely control experimental devices
over a distance, or building collaborative tools like video conferencing and file sharing [6].

The first successful implementation of remotely controlled robots was achieved in 1994 at the
University of South California in a programme called the Mercury Project [32]. The users could
guide a robot to find sand-filled items over the Internet and receive video feedback. By 1996,
undergraduate students were able to remotely utilise a fully operational laboratory with an
application called ‘Second Best to Being There’ (SBBT) [12, 32]. The first remotely controlled
laboratory, which allowed multiple users and sessions for multiple experiments, was developed
for measuring semiconductor devices in 1997 [7]. In 1999, the National University of Singapore
launched a virtual laboratory for oscilloscope experiments. It was one of the most excessively
used remote laboratories during the time [8, 9, 32].

During the early 2000s, along with the development of faster Internet connectivity and computer
systems, many educational institutes started implementing remote and virtual laboratories to
allow students to conduct experiments remotely [10]. Ever since, the use of virtual laboratories
has expanded, particularly in science and engineering education [19, 24, 37].

From the beginning, publications about virtual laboratories have also looked at how they could
make science more accessible, e.g. in “Virtual Laboratory for Disabled Students: Interactive
Metaphors and Methods” [36], “The Virtual Laboratory: Using networks to Enable Widely
Distributed Collaboratory Science” [27], “Tools for Virtual Laboratories” [1], and “Working in a
Virtual Laboratory - Advanced technology substitutes for travel for AIDS researchers” [23].

Appendix B — Virtual Laboratories in Virtual Environments
The user interface of VLs can extend far beyond graphs and interactive dashboards. They can
also provide imaginative virtual environments that visualise the three-dimensional laboratory
space and allow users to explore it [51]. Immersive VLs replicate the interactions a user would
have with physical lab equipment, e.g. in the control room, by providing special inputs and
feedback sensors. Furthermore, the visualisation of the experiment in a virtual environment can
be coupled to a physical simulation of the space, allowing the user to perform simple physical
interactions with the equipment as if they were physically there. Virtual Laboratories
environments can also benefit from being interactive and allowing multiple users to collaborate
(or compete) in the same space. On the other hand, single-user virtual environments can also
be beneficial, particularly so for training researchers to use the equipment in a safe
environment. Moreover, Virtual Laboratories can also utilise augmented reality, for instance, to
overlay diagnostics performed on the Digital Twin onto the real-world experiment. The
WetLands project demonstrates the potential of utilising augmented reality to visualise live data
and analysis results for citizen scientists and wetland maintenance staff for their local wetlands
[4]. Finally, virtual environments can also be used to integrate with virtual classrooms or
conferences [10, 37, 51], which have grown in importance over the past few years.
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Appendix C — The MLOps Architecture

Figure C.1: MLOps pipeline architecture overview. From: Figure 6, Raatikainen, M. et al. (2022)
[38]. Licensed under CC BY 4.0.
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