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1 Introduction

Mathematical models that describe various phenomena across a multitude of different fields
of science have enabled researchers to predict and understand what different features con-
tributes to the phenomena they study [7]. These complex models include and implement
fully non-linear ordinary or partial differential equations, multivariate latent factor models
and agent-based models, often combined together. These mathematical models, often called
simulations or simulators, enable researchers to numerically simulate phenomena that are
not easily observed due to practical, economical or ethical reasons.

However, in order for the mathematical models to provide insight and new knowledge,
they must be precise and provide accurate results. The simulators that are accurate are
often computationally demanding, meaning that it can take a lot of resources and time to
get the required results. This means that this computation often can not be created in an
environment that does not have the computational resources required or if the simulation
results are needed in a short time-span. The computational cost also limits simulators
in more extensive parameter exploration, and when data size are massive in scale, and in
uncertainty quantification [3].

Speeding up simulators enable them to provide results that are too prohibitively expensive
and make progress on scientific research faster. The speedup in simulators often come as a
tradeoff in accuracy, and thus it is important to maintain a reasonable level in both to get
best results, and finding methods that do this is an active are of current research.

A popular approach for speeding up simulators is to use machine learning models as
emulators [3]. In this context, emulators are machine learning models that try to reproduce
the output of simulators. These machine learning models do not fully replace the simulators,
as at the very least, simulator outputs are needed to train the machine learning models in
order for them to produce accurate outputs. Depending on the use case, they can be used in
tangent with simulators, replace the emulators after the initial tuning, or in a multi-fidelity
approach where both simulators and emulators are used in conjunction to provide optimal
results that rely on the more accurate simulators and more fast emulators. These emulators
are often machine learning regression models.
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Figure 1: Simulator and Emulator pipeline.

2 Regression Methods

Machine learning is used in various fields of science to predict and gain insight on problems
that cannot be solved using traditional computational or statistical approaches [4]. Regres-
sion is a subfield of supervised machine learning, a type of machine learning where labeled
datasets are used to predict continous outcomes. Regression is used to forecast and predict
certain outcomes and also find causal relationship between the independent and dependent
variables. However, regression alone only shows the relations between a dependent variable
and a dataset of different variables, meaning if some relations are not seen on the dataset
used, regression does not reflect these causal relationships.

Regression analysis predicts the dependent variable y for independent variables x. At its
simplest, a simple linear regression model defines the dependence of variable y = β0+β1x1+
...βnxn + ϵ. While linear regression is very easy to understand and the causal relationship
between the weights betai and the independent variables x make it easy to interpret, it can
not model complicated non-linear relationships between the variables. To this end, many
more complicated models have been developed, that provide more accurate predictions at the
cost of less being less interpretable. Models that are common in the realm of emulators are
random forests, Gaussian processes, and various neural network deep learning algorithms [3].
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3 Practical examples

Emulators have become vital in speeding up real-time simulations of complex processes such
as those occurring in geoscience [2], computational medicine [6], ecology etc.

3.1 Geophysical, Atmospheric and Planetary sciences

While computer simulations are very useful tools for scientific discoveries in geophysics,
atmospheric, astrophysics and high energy physics where usually direct observations or de-
signing experiments are very expensive or mostly impossible. Numerical simulations have
traditionally been used in these fields to understand complex processes occurring in these
fields. As mentioned in the first section, executing accurate simulations are often too slow
which limits their applicability in uncertainty quantification, large scale data analysis and
exploring parameters [3]. Emulators present a promising route to accelerate simulations us-
ing machine learning and deep learning techniques. This allows accurate results that are
comparable to those obtained from numerical simulations to be obtained with only a frac-
tion of the resources and time taken. In this section some examples of emulators used in
geophysics, atmospheric and planetary sciences are thoroughly discussed.

3.1.1 Emulators in Geophysics

Emulators have been used to study continuum scale brittle fracture simulations [2] and seis-
mic tomography studies [2] among others. Brittle failure under dynamic loading results in
the propagation and coalescence of microcracks which is very computationally expensive or
sometimes intractable to simulate. Accelerating high-strain continuum scale brittle fracture
simulations using machine learning emulators have led to about four order of magnitudes as
well as a dimensionality reduction of the problem. Using the just the length of the longest
crack and one of the maximum stress components to capture the necessary physics [2].
Shock wave physics is studied by impacting a target plate with a flyer plate to induce mode
I crack growth which induces non-homogeneous damage distribution in the target plate [2].

The physical problem is studied with an experimental set up while the numerical simulations
is carried out by the Hybrid Optimization Software Suite (HOSS). Other simulatation tools
such as FLAG are much faster that HOSS but performs poorly after 0.8 micro seconds since
it neglects the effects of damage evolution of the such wave physics. Coupling FLAG and
HOSS slightly improves the simulation speed, however it still suffers from the drawbacks of
HOSS beyond 0.8 micro seconds as illustrated in figure 1. A machine learning emulator is
used to replace the computationally expensive HOSS simulator.

The machine learning model is an LSTM model that takes the longest crack length over
time and the maximum stress over time as input parameters. The output is the shock wave
velocity over time. The data set consisted of 100 simulations with a train test split (70-30
percent). The model architecture is illustrated in figure 2. How the model performs on the
test set and an out of sample validation set are illustrated in figure 3.
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Figure 2: Result of high fidelity simulators compared to experimental output [2]

Figure 3: FLAG-ML model architecture [2]

Seismic tomographic inversion of the Shatsky Rise oceanic plateau has been carried out
using a Deep Neural Network Search (DENSE) as an emulator. Using the initial velocity
profile and regularization in the optimization as input parameters, the velocity structure and
crustal thickness as a function of position in the Shatsy Ridge that matches the seismic re-
flection data is inverted for [3]. Without using an emulator, uncertainty quantification would
be prohibitively expensive as the simulator would have to be executed multiple times [3].

3.1.2 Emulators in Atmospheric sciences

In the field of atmospheric sciences, ECHAM-HAM which is a high fidelity simulator for
global climate aerosol modeling is used to calculate the distribution and evolution of both
internal and external distribution of aerosol species in the atmosphere and how they affect
radiation and cloud processes. The simulators inputs include the scaling of the emissions
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(a) FLAG-ML test results [2] (b) FLAG-ML validation results [2]

Figure 4: FLAG-ML emulation results

flux of Black Carbon, scaling on the removal rate of Black Carbon through wet deposition
and scaling of the imaginary refractive index of Black Carbon between 0.2 and 0.8 [3].
The model output is the aerosol absorption optical depth. The model is computationally
expensive and can require several CPU hours. DENSE has been used to successfully emulate
the simulator even using few training data points.

3.1.3 Emulators in Planetary sciences

Halomod is a high fidelity simulator for galaxy Halo modelling. It is used in calculating
calculating correlation functions, angular scales, redshift, and cosmological models. Emula-
tors are extremely important for Galaxy Halo modelling as researchers are used interested
in extracting parameters for multiple and different galaxy populations. This fast parameter
retrieval is very difficult when working with slow high fidelity simulators prompting the need
for machine learning emulators [3].

3.1.4 Emulators in Ecology

In ecology, process-based models are used to understand the mechanisms of vegetation growth
and land-atmosphere interactions and predict properties such as Leaf Area Index (LAI), Net
Ecosystem Exchange (NEE), soil moisture, etc. These models that represent our understand-
ing of the physical processes have a high number of parameters that need to be calibrated for
each location before a model is used. The calibration process is time intensive as the models
are slow to run and a high number of parameter combinations have to be tried out. To make
this process faster, the authors in [1] trained a gaussian process emulator on the outputs of
the SIPNET model to predict ecosystem variables such as NEE. The emulator was then used
inplace of the actual SIPNET model in the calibration process. The parameters obtained by
using the emulator had similar performance as the original SIPNET model and reduced the
computation time by half.
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3.1.5 Other Application domains

Machine learning emulators have been used in other and often diverse fields in the natural
sciences such as studying ocean biogeochemistry models, inertial confinement fusion, Optical
Thomson scattering, X-ray emission spectroscopy etc [3]. Emulators have also been used to
provide near-real simulations of cardiac electromechanics achieving a massive improvement
in computational time. This is shown in Figure 4.

Figure 5: Comparing emulator to high fidelity simulator for cardiac electromechanics [6]

3.1.6 Incorporating physical constraints in emulators

In a typical data-driven emulator, the emulator is trained on the outputs of the original
model, however, when the size of training samples is low it can be hard to generalize the
model. To increase the accuracy and reliability of the model in such scenarios, prior knowl-
edge about the scientific phenomenon being studied can be incorporated into the model.
Towards this goal, the authors in [5] tried to improve the predictions of lake water tem-
perature produced by the General Lake Model (GLM) by using a physics-guided machine
learning approach. The relationship between the temperature and density of water in a lake
can be explained by a known empirical equation. This relationship can be included as an
additional loss term in a recurrent neural network. The accuracy of this hybrid model is
higher than that of using the RNN or the physics-based model (GLM) independently.
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3.1.7 Towards a general purpose emulator

Most emulators like most machine learning models are developed for a specific use case and
can not be extended to other cases without a modification in model architecture and training
procedure. However, new methods have been used to build emulators that approximate a
general purpose emulator, in the sense that it can be used to emulate models from different
and diverse domains without modification to the internal architecture of the emulator. This
approach is known as Deep Neural Network Search (DENSE) [3]. At its core DENSE is a
convolutional neural network (CNN) with a super neural network architecture, that allows
the right network architecture to found during the training phase of the model. In some
sense, the model architecture is treated as another hyper-parameter. The model architecture
is shown in figure 5.

Figure 6: DENSE super-architecture [3]

CNNs generally have good priors on natural signals as opposed to other ML models such
as random forests and gaussian processes which make them a natural choice for building
models in the natural sciences. A general purpose emulator which is fast and accurate would
allow for rapid testing of ideas and near real-time prediction based experiment control and
optimization [3]. Results of using DENSE to emulate high fidelity simulators for global
climate models (GCM), large scale ocean biogeochemistry models (MOPS) etc, are shown
in Figure 6.

3.1.8 Limitations of Emulators

Emulators like most ML models are data hungry and require data to be drawn from the
high fidelity simulator to train and test the emulator. This imposes a natural disadvantage
in constructing emulators especially when the simulator is extremely slow since the data

(a) Results for GCM and MOPS emulation
using DENSE [3] (b) Speedup and Loss result from DENSE [3]

Figure 7: Results obtained from different domains using DENSE
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generation process would be prohibitively slow. Hence robust emulators are cleverly built
to produce accurate results even with a limited amount of data. However, the benefit of
training and deploying emulators even when dealing with slow emulators usually far exceed
using only simulators without emulators.

On the performance side, emulators may struggle when dealing with models that have regions
of high variability. That is when slightly varying input parameters leads a high variation in
the output in those regions. This limitation is also observed in other deep learning mod-
els since regions with high variability need more data to adequately probe as compared to
regions with low variability [3].

4 Conclusion

Emulators have a wide range of applications they can provide, while providing the benefits
of large speedups that provide researchers and applications to do the computation required
in much more feasible time. Emulators have the tradeoff usually having a worse accuracy
than the simulators they are based on, but depending on the application this may be a minor
issue when you consider the benefits of large speedups that they provide.

Emulators will more likely become more commonplace as applications increase, as the real
world data sets are becoming too massive in scale to compute using traditional simulations.
This work is licensed under a Creative Commons Attribution 4.0 International License.
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