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ABSTRACT
This work tries to succinctly summarize the pitfalls of p-values in
data science and to present common alternative approaches. It was
done for a short seminar course in the University of Helsinki.
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1 INTRODUCTION
Statistical hypothesis test and p-values are valuable tools. They are
however very easy to misuse and combined with publication bias in
some fields this has led to a replication crisis [4, 7]. There has been
some radical reactions to this, with some journals declaring blanket
bans on p-values and confidence intervals [12]. Other journals
have made statements, which essentially boil down to: You can
do statistical tests and they are sometimes useful, but they should
not be substituted for thinking [12]. Similar sentiments have been
echoed from the researcher community [1].

The rise and fall of p-values is essentially an unintended conse-
quence of misinterpreting what statistical significance means [6, 9].
In addition to the false belief in the absolute nature of statistical
significance, there are various human, research cultural and finan-
cial factors contributing to a publication bias and essentially data
fabrication [4, 7, 9]. There have been calls for more research and
funding focus on replication and less on the hunt for novelty in
order to reduce these factors, see for example [4]. Another sug-
gestion discussed in [4] and [9] is pre-registration of confirmatory
studies and then publishing the results regardless of the statistical
significance, in order to reduce publication bias.

In this work I will try to summarize some of more useful concepts
for natural sciences and to explain the common pitfalls that lead to
misuse.

2 HYPOTHESIS TESTING
As any textbook on basic statistics will tell you, a statistical hypoth-
esis test is essentially a statistical model including (see for example
[11]):

• A null hypothesis, H0, and its complement H1.
• Several assumptions about the data and how it was gener-
ated.

Based on this model, one calculates a test statistic, and based on
the test statistic, one gets a probability of the model generating as
or more extreme deviation in the test statistic. This is called the
p-value. Unlike some journals, students and authors seem to think,
this is not an absolute measure of certainty in your results and
probably should not be the defining factor in whether you publish
your study or not [6]. Also, no single statistical test is appropriate
in all situations.

Things are further complicated by the fact that the usefulness
and validity of your p-value depends on what your null hypothesis
is and if the assumptions you made are valid. Very often the tests
null hypothesis is simply that the value in question is zero, that
is, your test only comments on if there seems to be any effect at
all. There is a common misconception that it guarantees anything
about the accuracy of your computed value [6]. Greenland et al.
[6] also notes that violations of the model assumptions are both
common and make interpreting p-values hard. In more detail, if
your assumptions are false, your test is likely to be wildly optimistic,
since the data is then highly unlikely under the statistical model
behind the test.

While software libraries have made statistical tests easy to do
and automate, usually ensuring that the assumptions are correct is
left to the user. As [6] notes the assumptions are in general hard to
verify, because you are usually relying on another statistical model
when testing for deviations from the assumptions.

2.1 Terminology
Some terminology needs to be introduced, in order to make sub-
sequent discussion easier. The notation here is from [2], but is
common in statistical literature:

• Critical threshold, α : If the p-value is below this, you re-
ject H0. This sets your accepted false positive rate, assuming
your data matches the statistical model, including H0.

• False positive: Rejecting H0, when it is true. Also known
as Type I error.

• False negative: Failing to reject H0, when H1 is true. Also
known as Type II error.

• Power: 1 - false negative rate. Essentially a measure of how
often the test is significant, if H1 is true. Usually higher with
larger samples and with larger effect sizes. Calculating power
usually requires making assumptions [5].

• Base rate: How many of the initial H1 can be expected to
be true. A measure of how unlikely your hypotheses are in
general.

If we discount, the human factors for a moment, [4] summarizes
the idea behind the first claim in [7] that most results are false
as follows: The more unlikely it is to find something, the larger
fraction of published results with significance are false positives. A
measure that they use for this is, false positive report rate:

α(1 − π )/[α(1 − π ) + (1 − β)π ] (1)

Where α is your significance limit, π the base rate of actually true
hypotheses and β is the power of the test. Equation 1 calculated
with various values of power and base rate can be seen in Figure 1.
Another related probability, positive predictive value, is used in [7].
As Ioannidis argues, things get considerably worse when we start
including the effects of bias and repeated hypothesis testing [7].
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Figure 1: False-positive report rate calculated from equation
1with α=0.05 . It is the probability of a positive result being a
false positive, without accounting for human and model er-
rors. As can be seen in studieswith lowpre-study probability
ofH1, almost all reported positives are likely to be false. The
crucial point here is that α is not the probability that you
are wrong, given a positive result. It’s not even close. The
figure shows that with very high powers the problem can be
avoided, but calculating the actual power of your study is
not simple [5].

3 MULTIPLE HYPOTHESIS TESTING
So how do we keep the error rate low when we ourselves are doing
multiple hypothesis testing? Essentially, doing multiple hypothesis
testing is a balancing act on controlling false positive and false
negative rates on the tests. Some statistical models already include
this sort of control by default, such as the popular ANOVA tests. In
general, there are two quantities one might try to control [10]:

• per-family error rate, PFER: The expected amount of
Type I errors.

• Familywise error rate, FWER: The probability of at least
one Type I error.

Although it can be noted that several others have also been used in
the literature [2].

3.1 Single step procedures
All p-values get the same adjustment, these procedures are conserva-
tive so they reject results eagerly [2]. Most commonly know are the
Bonferronipj,new =min(m∗pj , 1) and Šidákpj,new = 1−(1−pj )m ,
where m is the number of tests, which aim to minimize FWER [2].
There are other procedures, but they usually have to make more
liberal assumptions about the hypotheses being tested [2].

3.2 Stepwise procedures
These methods consider the tests in succession, in addition to just
the number of tests, thus gaining some more power [2]. They es-
sentially work by ordering the tests by p-value and subtracting the
index of the test from m, the ordering determines whether this is a
step-down, where the p-values are in ascending order, or a step-up
where they are in descending order [2].

3.3 Resampling
In many cases the you don’t know what the joint distribution of the
test statistic looks like, in these situations you can use resampling
strategies, such as bootstrapping [3] to try and adjust the p-values
[2].

3.4 Confidence intervals
Another related concept to p-values. While they avoid the singular
value focus of a p-value, the problem with confidence intervals
is that they are a similar construct with a variety of approxima-
tions and models behind them [6]. Here are two common ways to
calculate confidence intervals [6]:

• From the statistical model: Essentially taking all values
for H0 for which your test would be significant and calcu-
lating a lower and upper bound. In general case hard to
calculate.

• Assume model: Give confidence limits based on a an assumed
gaussian or other distribution for your point estimate, may
use bootstrap method [3] which is essentially resampling to
estimate these parameters.

In essence confidence intervals trade one value for two limits, that
one can misuse all the same. Even with simple confidence intervals,
a variety of very similar misconceptions to those in p-values have
risen among authors [6]. One of these is that directly comparing
confidence intervals does something meaningful [6].

4 BAYES FACTORS
Bayes factors are essentially comparing the probabilities of data,
given your two models [8]:

BF =
p(D |H1)

p(D |H2)
(2)

Where D is your data andHn are your two hypotheses. Bayes factors
allow you to compare evidence between two different models and
can work well when the underlying models are discrete or simple,
otherwise they may be just very difficult to calculate and require
defining prior distributions which may be unknown [8]. While
there are some guidelines for the strength of evidence [8], trying to
draw similar hard decision lines that led to the misuse of p-values
should be avoided [1].

5 SUMMARY
Statistical tests, p-values and confidence intervals are useful tools
when doing statistical analysis. In general, I would go with the
advice from [1] and [12]: A total ban of a particular statistic doesn’t
achieve anything and that unfortunately we just must put in the
effort of interpreting what has been actually done, instead of relying
on mental shortcuts, which are often not even remotely true [6].
This can cause some uncertainty, but it is important to note that
the certainty provided by p-value cutoff was illusory at best. In
applying statistical methods, some key points are:

• p-value: The cutoff is arbitrary; it doesn’t imply that your
results are (un)publishable. P-hacking, that is unethically
adjusting data so your test is significant, is mostly a human
problem, to which pure statistics has no answers.
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• Confidence intervals: Are sometimes useful to have for
point estimates, but you really need to specify what you
mean by them.

• Multiple hypothesis testing: Use controls on your ac-
ceptance criteria. If you can, have a separate validation data
set or a properly planned validation study, since no statisti-
cal trickery saves you from mistakes made during the data
collection.

• Bayes factors These allow you to imply different levels
of confidence assuming you can calculate the probabilities.
It is a tool that can help you choose between two different
models.
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