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ABSTRACT
In this project, examples of both supervised and unsupervised clas-
sification of atmospheric data are presented. The adventages and
disadventages of automating classification tasks in atmospheric re-
search are discussed.
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1 INTRODUCTION
Analysis on atmospheric data often involves searching or classify-
ing certain events or features in multidimensional data from large
data sets. Practical examples include separating new-particle for-
mation (NPF) events fromnon-events [Joutsensaari et al. 2018; Zaidan
et al. 2018], classifying particle shapes in particle imager data [Lindqvist
et al. 2012] and looking for signals of precipitation processes in
weather radar data [Tiira and Moisseev 2018]. Due to noise and
artifacts in measurement data, manual visualization method pro-
vides the best classification accuracy for each of the aforemen-
tioned tasks. However, manual classification of thousands of items
would be intensely time consuming, and in case the class bound-
aries would need to be changed, one would have to start from the
beginning. Additionally, human subjectivity reduces the repeata-
bility of the classification. In these aspects, an automated classi-
fication method has potential of bringing major advantages over
manual processing.

If classes are predefined, the term ”supervised classification” can
be used to dissociate these methods from clustering, which is of-
ten referred to as unsupervised classification. Unsupervised classi-
fication is be especially useful for discovering patterns in a large
dataset or when theoretical knowledge on the classification sub-
jects and the sought regularities is incomplete.

A typical classification pipeline consists of data cleaning and
feature engineering and scaling followed by the actual classifica-
tion algorithm. Selecting and configuring the individual parts of
the pipeline appropriately is a critical but not trivial part of the
analysis. In this report, examples of supervised and unsupervised
classification are shown in the context of atmospheric research.

Figure 1: Examples of NPF classes. Adopted from Joutsen-
saari et al. [2018].

2 SUPERVISED CLASSIFICATION:
IDENTIFYING NPF EVENTS

Supervised classification is used when class boundaries are pre-
defined. Notable examples of supervised classification methods in-
clude support vector machines, nearest neighbors, naive bayes and
decision trees. In this work, It is reviewed how a deep convolu-
tional neural network (CNN) can be used for classification of NFP
events, as shown by Joutsensaari et al. [2018]. They used a pre-
trained CNN called AlexNet [Krizhevsky et al. 2017] by transfer
learning it to recognize NFP events. The pretraining had been con-
ducted using millions of images of common items such as cars,
fruits and animals, from the ImageNet database [Deng et al. 2009].
Given the pretraining, the model can be modified for NFP event
classification using only hundreds of images for transfer learning.
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An NPF event involves generation of nanometer scale aerosol
particles through nucleation, which then grow to larger sizes. Tra-
ditionally, NPF event classification is done with 6 classes, visual-
ized in Fig. 1:

• Class 1: A clear NPF event
• Class 2: Like class 1, but with weaker signal
• Class 3: There are signs of nucleation, but it is hard to say if
the particles continue to grow or the growth seems to stop

• Nonevent: No NPF event occurs during the whole day
• Class 0: Days that don’t meet the criteria to be classified to
other classes

• Bad data: There was a problem in the measurement
Conventionally, the manual classification is done visually using

similar plots as in Fig. 1.Thus, Joutsensaari et al. [2018] chose to use
a CNNmethod as it mimics the visual method of human classifiers.

The overall accuracy of the classification for all classes was 63%.
The classification model had difficulties in distinguishing between
classes 1 and 2.The total classification accuracy is increased to 75%
if these two classes are combined. Thus, Joutsensaari et al. [2018]
recommend combining these classes when applying the classifica-
tion method.

On analyzing the misclassifications of the automated method,
Joutsensaari et al. [2018] found multiple examples where the mis-
classification was actually made by the human classifier and not
by the CNN. They concluded that when combining classes 1 and 2,
the CNN may be even more reliable than a human classifier.

3 UNSUPERVISED CLASSIFICATION:
IDENTIFYING SNOW PROCESSES FROM
RADAR PROFILES

Sometimes theoretical knowledge on the processes behind a dataset
is not complete enough for defining the classes by hand. In such
cases unsupervised learning can be used for discovering features
and patterns in data. In this report we look at how a simple K-
means clustering algorithm is used for classifying polarimetricweather
radar profiles as reported by Tiira and Moisseev [2018]. The study
aims to use simple machine learning methods for studying the
structure of the profiles and to identify precipitation processes. Au-
tomated identification of patterns in radar profiles have potential
for developing tools for weather services, such as filling gaps in
radar measurements caused by objects such as buildings blocking
the radar beams.

The vertical profiles of three polarimetric weather radar vari-
ables, equivalent reflectivity factor (Ze), differential reflectivity (Zdr)
and specific differential phase (Kdp), are used in the analysis. The
combination of these variables holds information on snowfall in-
tensity and average snow particle sizes and shapes inside the mea-
surement volume. In the analysis the variables are cleaned, nor-
malized and combined. The resulting 577-dimensional vectors are
dimensionally reduced using principal component analysis (PCA)
such that each profile is described with 30 principal components.
These components are used as classification features in K-means
clustering to create a classification model.

Ambient temperature, along with humidity, is a major factor de-
termining which precipitation processes occur in the atmosphere.
Profiles are cut at the top of melting layer in order to standardize

the profile base temperature to melting temperature. In case there
is no melting layer, i.e. it is snowing on the surface, surface tem-
perature is included as an extra classification parameter alongwith
the 30 principal components described above. As a result, there are
two separate classification models and the choice between them is
made based on if it is raining or snowing on the surface.

The Tiira and Moisseev [2018] study is the first attempt to auto-
mate classification of vertical profiles of radar measurements. As
such, it aims to use simple, repeatable and interpretable methods.
Domain knowledge is used sparingly to avoid over-fitting and to
allow wide applicability of the method e.g. in other locations.

The usage of unsupervised classification allowed Tiira andMoisseev
[2018] to discover and interpret previously undocumented types of
snow process signatures in the vertical profile measurements, such
as dual dendritic growth layers in presence of an inversion layer.
The method also produced profile classes which represent previ-
ously documented fingerprints of snow processes. Therefore it is
suitable for automated analysis of snow processes in large time
series of vertical profile data.

4 CONCLUSIONS
Classification problems are very common in atmospheric sciences,
and automating these processes may save time and bring advan-
tages in repeatability and even reliability [Joutsensaari et al. 2018].

Whether automating classification saves time compared to man-
ual methods depends on multiple factors, such as size and com-
plexity of the data set. The classification pipeline involves multiple
steps that need to be implemented, optimized and tested. Feature
extraction is one of the crucial steps. In the presented studies, this
step was largely automated. AlexNet, used by Joutsensaari et al.
[2018], had been pretrained to extract meaningful features in im-
age data. Tiira andMoisseev [2018], in turn, used PCA components
as features in their classification. Manually defining features to ex-
tract might be a time consuming process, but gives finer control.
As a downside, with increased control often comes increased risk
of overfitting and involving personal biases in the process.

If nothing else, automating classification brings repeatability.
This is not only important for others to be able to repeat the re-
sults, but it may prove to be useful even in the original research. For
example, the classification criteria might need to be modified for
some reason. With manual classification, the whole process might
need to be repeated, in contrast to just making the modifications
to the automated classification pipeline and rerunning the com-
putations. Repeatability does not always imply transparency and
interpretability, as seen with black box classifiers.

When implemented in ameaningful way, machine learning clas-
sifiers mostly make misclassifications in cases that are difficult to
interpret even for humans. Joutsensaari et al. [2018] and many oth-
ers have found that human errors may result in flagrant misclassifi-
cations of even textbook example quality objects.Therefore, even a
simple automated classifier with poor overall accuracy may be use-
ful in a hybrid approach for spotting the most obvious mistakes of
a human classifier.
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