It is highly recommended that you normalise the data, either before using SLISE or by setting normalise = TRUE.
Usage
slise.explain(
  X,
  Y,
  epsilon,
  x,
  y = NULL,
  lambda1 = 0,
  lambda2 = 0,
  weight = NULL,
  normalise = FALSE,
  logit = FALSE,
  initialisation = slise_initialisation_candidates,
  ...
)Arguments
- X
 Matrix of independent variables
- Y
 Vector of the dependent variable
- epsilon
 Error tolerance
- x
 The sample to be explained (or index if y is null)
- y
 The prediction to be explained (default: NULL)
- lambda1
 L1 regularisation coefficient (default: 0)
- lambda2
 L2 regularisation coefficient (default: 0)
- weight
 Optional weight vector (default: NULL)
- normalise
 Preprocess X and Y by scaling, note that epsilon is not scaled (default: FALSE)
- logit
 Logit transform Y from probabilities to real values (default: FALSE)
- initialisation
 function that gives the initial alpha and beta, or a list containing the initial alpha and beta (default: slise_initialisation_candidates)
- ...
 Arguments passed on to
graduated_optimisation,slise_initialisation_candidatesbeta_maxStopping sigmoid steepness (default: 20 / epsilon^2)
max_approxApproximation ratio when selecting the next beta (default: 1.15)
max_iterationsMaximum number of OWL-QN iterations (default: 300)
debugShould debug statement be printed each iteration (default: FALSE)
num_initthe number of initial subsets to generate (default: 500)
beta_max_initthe maximum sigmoid steepness in the initialisation
pca_tresholdthe maximum number of columns without using PCA (default: 10)
