SLISE Black Box Explainer Use SLISE for explaining predictions made by a black box. BUT with sparsity from a combinatorial search rather than Lasso!
Source:R/slise.R
      slise.explain_comb.RdSLISE Black Box Explainer Use SLISE for explaining predictions made by a black box. BUT with sparsity from a combinatorial search rather than Lasso!
Arguments
- X
 matrix of independent variables
- Y
 vector of the dependent variable
- epsilon
 error tolerance
- x
 the sample to be explained (or index if y is null)
- y
 the prediction to be explained
- ...
 Arguments passed on to
slise.explainlambda1L1 regularisation coefficient (default: 0)
lambda2L2 regularisation coefficient (default: 0)
weightOptional weight vector (default: NULL)
normalisePreprocess X and Y by scaling, note that epsilon is not scaled (default: FALSE)
logitLogit transform Y from probabilities to real values (default: FALSE)
initialisationfunction that gives the initial alpha and beta, or a list containing the initial alpha and beta (default: slise_initialisation_candidates)
- variables
 the number of non-zero coefficients