SLISE Black Box Explainer Use SLISE for explaining predictions made by a black box. BUT with a binary search for sparsity!
Source:R/slise.R
slise.explain_find.RdDEPRECATED: This is a simple binary search, no need for a separate function
Arguments
- ...
Arguments passed on to
slise.explainXMatrix of independent variables
YVector of the dependent variable
epsilonError tolerance
xThe sample to be explained (or index if y is null)
yThe prediction to be explained (default: NULL)
lambda2L2 regularisation coefficient (default: 0)
weightOptional weight vector (default: NULL)
normalisePreprocess X and Y by scaling, note that epsilon is not scaled (default: FALSE)
logitLogit transform Y from probabilities to real values (default: FALSE)
initialisationfunction that gives the initial alpha and beta, or a list containing the initial alpha and beta (default: slise_initialisation_candidates)
- lambda1
the starting value of the search
- variables
number of non-zero coefficients
- iters
number of search iterations
- treshold
treshold for zero coefficient